This project is a joint CESM and SIMA activity funded by the National Science Foundation

Coupling a variable-resolution atmosphere to POP2: preindustrial control and an idealized warming experiment

February 2023

Adam R. Herrington¹, Ziqi Yin², William H. Lipscomb¹, Gunther Leguy¹, Andrew Gettelman¹, Marcus Lofverstrom³, Jan Lenaerts², Aneesh Submaranian², Rajashree Tri Datta²

> ¹Climate and Global Dynamics Laboratory, National Center for Atmospheric Research ²Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder ³Department of Geosciences, University of Arizona

Outline

Coupling the Arctic grid to 1° POP2 in CESM2.2:

- Challenges, e.g., tuning
- piControl climate
- 1pctco2 experiment
- Greenland Ice Sheet in CISM and its response

Compare to CMIP6 1° workhorse (CESM2.1)

- piControl (Lofverstrom et al 2020)
- 1pctco2 (Muntjewerf et al 2020)

Challenges with Variable-Resolution (VR) Grids

Two orthogonal problems with conventional physics packages:

- (1) Inadequate scale awareness
- Not much we can do about this except to avoid refining regions with lots of diabatic forcing and vertical motion
- (2) Large sensitivity to physics time-step
- We could run with the 1° physics time-step to avoid re-tuning from (2), but solution accuracy is reduced substantially.

Tune by proxy – tune the 1° model using the (small) VR time-step

Estimated cost of tuning

NCAR

UCAR

- Prioritize balanced RESTOM, reasonable cloud cover and SSTs
- About 20 x 10 year simulations + a couple 20 year simulations
- *3 times more expensive than 1° ~ 1.5-2 M core hours

*the Arctic grid is 10 times more expensive than 1°

AMWG 2023

CISM is on; **BG ARCTIC** is branched from the **BG7 control** of Lofverstrom et al. 2020

2-3 W/m2 reduction is SW absorbed by ocean (not shown)

Comparing **BG ARCTIC** to **BG7**

Comparing **BG ARCTIC** to **BG7**

 $1\text{-}2^{\circ}$ models are missing clouds around the coastlines, and the interior is too cloudy

Herrington et al. 2022, JAMES

1-2° models are missing clouds around the coastlines, and the interior is too cloudy

UCAR

BG7 uses 1° FV dycore; employs creative methods for reducing GrIS precip. bias

Thanks also to Miren Vizcaino and Kate Thayer-Calder for help with reproducing these results

NCAR

UCAR

AMWG 2023

Morlighem et al. 2014

150 200 250 Year 120 40 80 Years

NCAR

UCAR

GrIS response in BG ARCTIC 1pctco2

AMWG 2023

NCAR UCAR

A question to think about

- Is there community interest in "this" being "supported"
 - anyone can check out https://github.com/ESCOMP/CESM and reproduce my results
 - anyone can check out <u>https://github.com/ESCOMP/CESM</u> and run this configuration (outdated tunings as the code base is well into transition to CAM7/CESM3)
- Supporting a POP2 configuration is not very forward looking
 - We will begin coupling the DUAL POLAR grid to MOM6 later this year

Extra Slides

Overshot the cloud forcing; ~3 W/m2 reduction in absorbed solar

NCAR UCAR

AMWG 2023

SWCF (W/m2)

SST (K)

CISM is on; branch from JG/BG control (Lofverstrom et al. 2020)

*80 year means

NCAR

UCAR

AMWG 2023

Herrington et al. 2022

 $1\text{-}2^{\circ}$ models are missing clouds around the coastlines, and the interior is too cloudy

