Documentation for CESM CAM4 and 5 with Chemistry (and Prescribed Dynamics); and WACCM; Running an existing component set (on yellowstone)

More information on how to run CESM: http://www.cesm.ucar.edu/models/cesm1.2/

This documentation is for the release version cesm1_2! CESM1.2 contains NO scientifically validated component sets and as such is not to be used for scientific simulations.

http://www2.cesm.ucar.edu/models/scientifically-supported

Skip the following step if you are not creating your own branch:

For a list of release versions, type:

> svn ls https://svn-ccsm-release.cgd.ucar.edu/model versions/

Then you can check out the latest version:

- > mkdir ~/cesm
- > cd \sim /cesm
- > svn co https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_2_0_mycopy

Creating, building and running

Pick One Component Set (**see tables below**), or find a list of all supported compsets: http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/compsets.html

Roadmap for a CAM-Chem and WACCM model run (Quickstart):

Create a new case called <case_name>:

CESM_ROOT = <release tag>

On yellowstone: /glade/p/cesm/cseg/collections/cesm1_2_0

Go to your model directory **CESM_ROOT**, then **cd scripts** and invoke:

create_newcase -case \$CASE/<case_name> -res f19_f19

-compset <COMPSET> -mach yellowstone (change 'yellowstone' to your computer name)

f19 f19: data ocean (finite volume of the atmosphere)

f19_g16: active ocean

A new directory < case_name> is created in your CASE (below, < case_dir>) in

\$CASE/<case_name>

- 2. Setup your run: cd to **<case_dir>** and invoke ./cesm_setup
- 3. Make changes to defaults if desired (see description below)
 - edit **env_build.xml** to change calendar type (NO_LEAP, GREGORIAN), CAM_CONFIG_OPTS (e.g., to point to new mechanism file), different vertical levels. If you have to rebuild the model, make sure to invoke *.clean_build first
- 4. Configure and build the model in **<case_dir>**: ./*.build file
- 5. Make changes to your namelist variable (if desired): edit file user_nl_cam, user_nl_clm ect. in <case_dir> to modify paths to emissions, output variables. NOTE: changes in user_nl* files do not require new configuration or build.
- 6. Invoke ./preview_namelists
- 7. Check your model setup in CaseDocs: e.g., atm_in (namelist), chem_mech.in (chemistry mechanism)
- Check run setup: **env_run.xml.** The default is a test run -- 5 days.. **NOTE: changes can be performed any time during the run**
- 8. ./*.submit (or bsub < ./*.run on yellowstone)
 - default for model output is in <run_dir>:

/glade/scratch/<username>/<case_name>/run

namelist that was used for run in <run_dir>/atm_in

Modification of the run (no changes to the model configuration):

- 1. edit **env_run.xml** to change run specifications, run type (startup, branch), start date (RUN_STARTDATE), run time, output, restart, type of archiving
- 2. open *.run to change run specific parameters, NOTE: there is a new 'small' queue for <2hour runs available that will be treated like premium but is cheaper.
- 3. after these changes you can just resubmit the run

Some additional useful information to point 1:

CONTINUE_RUN: needs to be set to TRUE to continue a run for several time segments RESUBMIT: set value to the number of segments you want to run (value counts down during the simulation)

REST_OPTION: will write out restart files in the frequency chosen (e.g., nmonths every months)

REST_N: frequency of restart file output, 0: no restart file

DOUT_L_MS: archiving to mss is not a default and needs to be set

Archiving:

- -short-term archiving in /glade/scratch/<username>/archive
- -long-term archiving on the mass store :execute *.l_archive

Modification of the namelist (can be done during the run, no compilation required):

(nl definitions: http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-pub)

edit **user_nl_cam** in your <case_dir> to change your namelist, for example, emissions, met fields, model output etc. Examples:

add aircraft of satellite obs. track option:

```
&satellite_options_nl
sathist_fincl = species
sathist_hfilename_spec = '%c.cam2.aircraft.%y-%m-%d-%s.nc'
sathist_track_infile = '<aircraft track file location>'
/
```

Running with MEGAN emissions: find detailed information here:

http://www.cesm.ucar.edu/working groups/Chemistry/running CESM1 MEGAN-v0408.pdf

Modification of the chemistry mechanism, example:

- 1. copy an input file in \$CCSMROOT/models/atm/cam/chem_proc/input to your directory and name it: **my_mech.in**
- 2. edit **my_mech.in**
- 3. edit **env_build.xml** and add to:

```
<entry id="CAM_CONFIG_OPTS" ... usr_mech_infile my_mech.in" />
```

- 4. if needed, modify source code (for example for wet-dep or dry-dep) and place in appropriate subdirectory of **<case_dir>/SourceMods/**:
- files originally in /models/atm/cam/src/chemistry/mozart/ go in

<case_dir>/SourceMods/src.cam/

• files originally in models/drv/shr/ (e.g., seq_drydep_mod.F90) go in

<case_dir>/SourceMods/src.share/

- 5. invoke *.clean_build and *.build to rebuild your model
- 6. if you have trouble configuring (e.g., errors in your mechanism file), edit the **configure** script: **env_case.xml** commenting out the line: rm -rf \$CASEBUILD. This allows you to track down how far the pre-processor got, etc. However, you have to invoke **cesm_setup** –clean and **cesm_setup** again

Add new species:

You have to modify the setup of the mechanism if you add more species: models/atm/cam/src/chemistry/...

If you want to add a species that will be dry/wet deposited, you might have to adjust the following routines:

- models/drv/shr/seq drydep mod.F90
- models/atm/cam/src/chemistry/mozart/mo drydep.F90 (subroutine drydep xactive)
- models/lnd/clm/src/clm4_0/biogeochem/DryDepVelocity.F90
- Add your new species in the masterlist: models/atm/cam/bld/namelist_files/master_drydep_list.xml, master gas wetdep list.xml, master aer wetdep list.xml, ect if needed

If you add a species with dry depostion that is not listed in the species_name_table list in models/drv/shr / seq_drydep_mod.F90, you can map it to one of the species in the list, as done in the subroutine seq_drydep_init.F90

Available Deposition Schemes:

Available Chemistry Mechanisms for CESM CAM-Chem:

- MOZART4 Chemistry: trop_mozart (103 species) including HCN,CH₃CH + C₂H₂, HCOOH
- MOZART4 trop-start mozart (122 species) including stratospheric heterogeneous reactions
- MOZART4 +mam 4 additional reactions on aerosols
- MAM get information from the Chemistry (SO2, DMS, H2SO4) to calculate the aerosol modes. If chemistry is not included, these values are prescribed using a climatology.
- Superfast Chemistry (15 species)

Available Chemistry Mechanisms for CESM WACCM:

- Standard WACCM chemistry: waccm_mozart (59 species) for stratospheric chemistry
- Specified Chemistry, SC-WACCM: waccm_ghg (5 species): CH4, N2O, CFC11, CFC12, & H2O for use with prescribed stratospheric ozone
- WACCM with sulfur chemistry: waccm_mozart_sulfur (66 species) adds 7 sulfur-bearing gases, including OCS, to the standard WACCM chemistry, for use with the CARMA sulfate model
- WACCM with modal aerosols: waccm_mozart_mam3 (78 species) for use with WACCM5 (under development)

Additional input files for default chemical mechanisms are in each source code subdirectory for mechanisms under \$CCSMROOT/models/atm/cam/src/chemistry/pp_* (i.e. pp_waccm_mozart)

Emissions: Default path on Yellowstone: /glade/p/cesm/cseg/inputdata/atm/cam/chem/emis **For trop mozart (MOZART-4):**

MOZART-4 standard emissions (Emmons et al., GMD, 2010) /glade/p/cesm/cseg/inputdata/atm/cam/chem/emis/1992-2010/

Default for offline model runs:

- -Anthropogenic: POET, with REAS over Asia (time-varying for 1997-2010; 1997 used for 1992-1996).
- -Biomass burning: GFED-v2 1992-1996: avg of 1999-2007; 1997-2008: for each year/month; 2009-2010: FINN.
- -Biogenic, soil, ocean, volcano: POET, GEIA,

Species emitted for standard mozart-4 chemistry:

NO, CO, C2H6, C2H4, C3H8, C3H6, BIGALK, BIGENE, TOLUENE ISOP, C10H16, CH2O, CH3CHO, CH3OH, C2H5OH, CH3COCH3, MEK CB1, CB2, OC1, OC2, SO2, DMS, NH3, HCN, CH3CN, C2H2, HCOOH

If running with FINN fire emissions, also have:

NO2, BIGALD, CH3COCHO, CH3COOH, CRESOL, GLYALD, HYAC, MACR, MVK

Improved Climatology for the Stratosphere based on IPCC model runs based on WACCM (O₃, NO₉, CH₄, CO)

ACCMIP and RCPs, speciated for trop_mozart: /glade/p/cesm/cseg/inputdata/atm/cam/chem 1850-2000_emis 2000-2100_RCP45 2000-2100_RCP85

If running with MEGAN, must create emissions files for all MEGAN species, with the biogenic emissions removed (if have other types, such as bb).

Aircraft emissions (time-dependent, 3D, for NO, CO, SO2, BC, etc.): /glade/p/cesm/cseg/inputdata/atm/cam/chem/emis/

For MAM surface and external forcings:

/glade/p/cesm/cseg/inputdata/atm/cam/chem/trop mozart aero/emis/

Available Meteorological Datasets: (ESG)

the location is:

http://www.earthsystemgrid.org/browse/viewDataset.htm?datasetId=f9a382be-53c5-11e0-80e4-00c0f03d5b7c

for MERRA, and

http://www.earthsystemgrid.org/browse/viewDataset.htm?datasetId=9d662678-4e5c-11e0-80e4-00c0f03d5b7c

GEOS5: 1.9x2.5, 0.5x0.6 2004-present MERRA: 1.9x2.5 0.5x06, 1979-present

On Yellowstone:

/glade/p/cesm/cseg/data_tmp/

Compsets: CESM1.2.0 CAM-Chem, grid:1.9x2.5	Model (phys)/ radiation/grid	Chemistry	Components / Meteorology
CAM4, static ocean: B_2000_TROP_MOZART (BMOZ) B_2000_MOZSOA (BMOZSOA)	CAM4, active f19_g16	trop_mozart +soa chemistry	Full ocn/ice, CLM4.0 +MEGAN data ocn/ice
F_2000_TROP_MOZART (FMOZ) F_2000_MOZSOA (FMOZSOA) F2000_C4SSOA_L40 (FSOA)	f19_f19	trop_mozart, soa trop_mozart, soa trop/strat soa	+MEGAN +MEGAN +MEGAN
CAM4, specified dynamics: FGEOS_C4BAM_L40CN (FSDBAM) FGEOS_C4MOZ_L40CN (FSDCHM)	CAM4, passive f19_f19	trop_bam trop_mozart	transient data ocn/ice, CLM4.0/CN, GEOS5
CAM5, static ocean: B_2000_MOZMAM_CN (BMOZMAM) B_2000_STRATMAM3_CN (BSTRATMAM3)	CAM5, active f19_g16	trop_mozart,mam trop/strat mam	Full ocn/ice CLM4.0/ CN
B_2000_STRATMAM7_CN F_2000_MOZMAM_CN (FMOZMAM) F_2000_STRATMAM3_CN F_2000_STRATMAM7_CN	f19_f19	trop/strat mam7 trop mam trop/strat mam trop/strat mam7	data ocn/ice, CLM4.0_CN
CAM4 superfast chemistry B_2000_CN_CHEM (B2000CNCHM) B_1850_CN_CHEM (B1850CNCHM) B_1850-2000_CN_CHEM (B20TRCNCHM)	CAM4, active f19_g16	super_fast_llnl	MEGAN VOC CLM4.0/CN transient full ocn/ice
F_1850_CN_CHEM (F1850CNCHM)	f19_f19		static full ocn/ice

CESM1.2.0(WACCM) Compsets	Supported Grids	Components / Meteorology
Full ocean, static: B_1850_WACCM_CN (B1850WCN) B_2000_WACCM_CN (BWCN)	f19_g16	CLM4.0/CN pre-industrial present day
Full ocean, transient: B_1850-2005_WACCM_CN (B20TRWCN) B_1955-2005_WACCM_CN (B55TRWCN) B_RCP2.6_WACCM_CN (BRCP26WCN) B_RCP4.5_WACCM_CN (BRCP45WCN) B_RCP8.5_WACCM_CN (BRCP85WCN)	f19_g16	CLM4.0/CN annual solar variability daily solar variability daily solar variability daily solar variability daily solar variability
Data ocean, static: F_1850_WACCM (F1850W) F_2000_WACCM (FW) F_2000_WACCM_SC (FWSC) F_2000_WACCMX (FWX) F_1996_WACCMX (FWX1996)	f19_f19, f45_f45	CLM4.0 pre-industrial present day specified chemistry thermosphere extension, solar max thermosphere extension, solar min
Data ocean, transient: F_1955-2005_WACCM_CN (F55WCN) FGEOS_C4WCM_L40CN (FSDW)	f19_f19, f45_f45	CLM4.0/CN, daily solar variability GEOS5 nudging