Documentation for CESM CAM4 with Chemistry (and Prescribed Dynamics); Running an existing component set (on bluefire)

More information on how to run CESM: http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc/book1.html

To start, check out the latest version of the model: <u>http://www.cesm.ucar.edu/models/cesm1.0/</u> Skip this step if you are working on bluefire.

Creating, building and running

Pick One Component Set (see table)

Example: F_SD_CAMCHEM (CAM-Chem, using CAM4, trop-mozart chemistry and GOES5 wind starting January 2008, 1.9x2.5 horizontal resolution, default emissions are POET emissions for 1992-2010)

Compsets	Model (phys)/ radiation	Chemistry	Components / Meteorology
B_2000_TROP_MOZART (BMOZ) F_2000_TROP_MOZART (FMOZ)	CAM4, active CAM4, passive	trop_mozart trop_mozart	All active Prescr. ocn/ice, CLM dry dep
F_SD_CAMCHEM (FSDCHM) F_SD_BAM (FSDBAM)	CAM4, passive	trop_mozart trop_bam	Prescr. ocn/ice, clm dry dep, offline: GEOS5 (56lev)
F_TROP_STRAT_CHEM	CAM4, passive	trop/ strat_mozart	Prescr. ocn/ice, clm dry dep
B_2000_CN_CHEM (B2000CNCHM) B_1850_CN_CHEM (B1850CNCHM) F_1850_CN_CHEM (F1850CNCHM) B_1850-2000_CN_CHEM (B20TRCNCHM)	CAM4, active	super_fast_llnl	MEGAN VOC emis CLM dry dep, land nitrogen cycle

Roadmap for a CAM-Chem model run:

1. Create a new case called <case_name>:

CESM_ROOT = <release tag> (intern)

Go to your model directory CESM_ROOT, then cd scripts and invoke:

create_newcase -skip_rundb -case \$HOME/<case_name> -res f19_f19

-compset <COMPSET> -mach bluefire (change 'bluefire' to your computer name)

f19_f19: data ocean (finite volume of the atmosphere)

f19_g16: active ocean

A new directory **<case_name>** is created in your **<home_dir>** (below, **<case_dir>** is **
chame_dir>** (below, **<case_dir>** is **
chame_dir**
(below, **<case_dir**) (below, **<case_dir**) (below) (below, **<case_dir**) (below) (below) (below) (below, **<case_di**

<home_dir>/<case_name>)

2. Make changes to defaults (see description below)

- edit/create file user_nl_cam in <case_dir> to modify paths to emissions, output variables, etc. (see below)
- edit **env_conf.xml** to change run type (startup, branch), start date, etc.

(RUN_STARTDATE), change your user_nl_cam accordingly

- 3. Configure the case, in <case_dir>: configure -case
- 4. Build the model: ./*.build file
- 5. Run (the default is a test run -- 5 days, no restart): **bsub < ./*.run** (or ./*.submit)
- model output is in <run_dir>: /ptmp/<username>/<case_name>/run
- namelist that was used for run in <**run_dir**>/**atm_in**

Modification of the run (no changes to the model configuration):

- 1. edit env_run.xml to change run specifications, run time, output, restart etc., for example
- 2. open ***.run** to change run specific parameters (length per segment, etc)
- 3. after these changes you can just resubmit the run

Some additional useful information:

CONTINUE_RUN: needs to be set to TRUE to continue a run for several time segments

RESUBMIT: set value to the number of segments you want to run (value counts down during the simulation)

REST_OPTION: will write out restart files in the frequency chosen (e.g., nmonths every months)

REST_N: frequency of restart file output, 0: no restart file

DOUT_L_MS: archiving to mss is not a default and needs to be set

Archiving:

•

-short-term archiving in /ptmp/<username>/archive

-long-term archiving on the mass store

Modification of the namelist:

(nl definitions: <u>http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-pub</u>)

- 1. cp user_nl_cam to your <case_dir>,
- edit user_nl_cam in your <case_dir> to change your namelist, for example, emissions, met fields, model output etc. add aircraft of satellite obs. track option:

&satellite options nl

sathist_fincl = species

sathist_hfilename_spec = '%c.cam2.aircraft.%y-%m-%d-%s.nc'

sathist_track_infile = '<aircraft track file location>'

Note if you want to change to different vertical/horizontal levels you have to configure a new case and start at point 1 of the roadmap.

- 3. invoke **configure cleannamelist** to unlock env_conf.xml and to create a new namelist
- 4. invoke configure –case in your <case_dir> (you do not need to rebuild the model)
- 5. run the model

Modification of your configuration: env_conf.xml

1. edit env_conf.xml for example to change the start date of your model run or add new chemical mechanism (see below)

2. invoke **configure –cleanall** and **configure –case** to produce a new configuration

More information:

http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc/a3863.html

Modification of before building the model: env_build xml

1. modify env_build.xml (for example to be able to use GREGORIAN calendar option: set USE_ESMF_LIB

to TRUE

- 2. invoke *.clean_build
- 3. build your model again: invoke *.build

Modification of the chemistry mechanism

1. copy an input file in \$CCSMROOT/models/atm/cam/chem_proc/input to your directory and name it:

- my_mozart_mech.in
- 2. edit my_mozart_mech.in

3. edit env_conf.xml and change: <entry id="CAM_CONFIG_OPTS" value="-phys cam4 -chem trop_mozart -nlev 56 offline_dyn" /> to <entry id="CAM_CONFIG_OPTS" value="-phys cam4 -chem trop_mozart -nlev 56 -offline_dyn</p>

-usr mech infile my mozart mech.in" />

4. if needed, modify source code (for example for wet-dep or dry-dep) and place in appropriate subdirectory of **<case_dir>/SourceMods**/:

- files originally in /models/atm/cam/src/chemistry/mozart/ go in
- <case_dir>/SourceMods/src.cam/
- files originally in models/drv/shr/ (e.g., seq_drydep_mod.F90) go in

<case_dir>/SourceMods/src.share/

- 5. change namelist to add new dry dep species
 - add variables to drydep_list, under &drydep_inparm group
 - wet dep species are listed in the mechanism file
- 6. invoke configure –cleanall and configure –case to produce a new configuration

7. if you have trouble configuring (e.g., errors in your mechanism file), edit the **configure** script, commenting out the line: rm -rf \$CASEBUILD (line 213). This allows you to track down how far the pre-processor got, etc.

Available Deposition Schemes:

Dry Deposition: namelist options in drv_flds_in (drydep_inparm): drydep_list = list of species drydep_method = 'table' (prescribed method in CAM) 'xactive_atm' (interactive method in CAM) 'xactive_lnd' (interactive method in CLM)

Wet Depostion (wash out): namelist options in atm_in (wetdep_inparm) gas_wetdep_list = list of species gas_wetdep_method = 'NEU' (J Neu's scheme) 'MOZ' (MOZART scheme)

Available Chemistry Mechanisms:

MOZART4 Chemistry: trop_mozart (103 species) including HCN,CH₃CH + C₂H₂, HCOOH

MOZART4 trop-start mozart (122 species) including stratospheric heterogeneous reactions

Available Emissions for the past:

Surface Emissions: Default for offline model runs: --Anthropogenic: POET, with REAS over Asia (time-varying for 1997-2010; 1997 used for 1992-1996). --Biomass burning: GFED-v2 - 1992-1996: avg of 1999-2007; 1997-2008: for each year/month; 2009-2010: FINN.

-Biogenic, soil, ocean, volcano: POET, GEIA, etc. as described in Emmons et al., 2010.

Available Emissions for the future:

Surface Emissions for RCP4.5 scenario

Improved Climatology for the Stratosphere based on IPCC model runs based on WACCM (O₃, NOy, CH₄, CO)

Time dependent 3D chemistry sources aircraft emissions

Available Meteorological Datasets: (ESG)

GEOS5: 1.9x2.5, 0.5x0.6 2004-present MERRA: 1.9x2.5 0.5x06, 1979-present