
Chemistry Preprocessor

Introduction

The chemistry preprocessor is a tool that generates CAM Fortran source code that numerically solve a set of differential equations which
represent the chemical reactions. Solving this set of differential equations provides the temporal evolution of the chemical tracers.

The chemistry preprocessor generates code that is numerically efficient (with hard-wired values) and provides provides flexibility when changing
the chemical mechanism. The input is an ascii file that uses a straightforward syntax to describe the chemistry of a simulation. The input file
defines the chemical species, photolysis and gas phase reactions and rate constants, partitions species by numerical solution algorithm, and
specifies which species have heterogeneous removal by washout, external forcing, and which species are not transported.

Upon successful completion the preprocessor produces all the chemistry source files required to build a CAM-Chem executable that represents
the simulation defined in the preprocessor input file. Additionally, the preprocessor outputs a “document” file containing a summary of the
processed input file. If the preprocessor detects a syntax or logic error the diagnostics relating to the error can be found at the end of the
“document” file. The preprocessor can alter the simulation chemistry from the narrow perspective of a single reaction rate to the broad scale of
entirely replacing the “standard” chemistry sets.

Completely replacing the "standard chemistry", although rather easy to do with the preprocessor, has far ranging code consequences. Several
source code files in the “base” source directories use fortran modules produced by the preprocessor.

The MOZART chemistry preprocessor has been adopted for use in CAM-Chem.

Invocation

The chemistry preprocessor can be invoked via the CAM configure utility or as a stand-alone executable. Invoking the preprocessor from CAM
configure makes it relatively easy to customize the chemistry. Executing the preprocessor as a stand-alone tool allows the user to test input files
outside of the CAM cofigure.

CAM configure

The user has the ability to customize the CAM-Chem chemistry mechanism when CAM is configured. The chemistry preprocessor can be
engaged with CAM configure options:

setenv CAMCHEM_EDITOR emacs

$biddir/configure
 -usr_mech_infile $mechanism_filepath
 -edit_chem_mech

where

 $mechanism_filepath is the full path name of the preprocessor input file

The "-edit_chem_mech" option uses the editor specified by the $CAMCHEM_EDITOR environment variable if set, otherwise vi. This typically
would be used when small changes to the mechanism are desired. The input file for "CAM configure" mode of invocation is the same as the
stand-alone mode without the BEGSIM, ENDSIM, and the preprocessor files entries.

When the chemistry is customized via these options, CAM configure will invoke the preprocessor and include the newly generated fortran source
code in the compile search path.

Stand-alone

Preprocessor Source:

The location of the preprocessor in the CAM source distribution is

$CCSMROOT/models/atm/cam/chem_proc/

Executable Build

1.
2.
3.
4.
5.
6.

7.

At the unix prompt enter the follow commmands :

prompt> cd $CCSMROOT/models/atm/cam/chem_proc/src
prompt> gmake

This will create an executable named "campp" in the directory .$CCSMROOT/models/atm/cam/chem_proc/bin

Run

At the unix prompt enter :

prompt> path/campp path/input_file

This will produce output files as specified in the input_file "Preprocessor Files" section. The necessary fortran source code files, contained in a .tar
file. This will also produce a human readable ascii .doc file which is a description of the chemistry mechanism.

There are many sample input files in .$CCSMROOT/models/atm/cam/chem_proc/inputs

Input File

Input file

BEGSIM

 Preprocessor Specs

 Comments
 End Comments

 SPECIES
 End SPECIES

 Solution Classes
 End Solution Classes

 CHEMISTRY
 END CHEMISTRY

 SIMULATION PARAMETERS
 END SIMULATION PARAMETERS

ENDSIM

A mozart preprocessor input file, a simple ascii file, has the above general structure. Note how section keyword pairs are of the form :

 keyword
 end keyword

except for the BEGSIM, ENDSIM pair and the “Preprocessor Files” entries. The comments and chemistry sections are optional; all others are
mandatory. All input between the BEGSIM, ENDSIM pair, if present, must be order as above. What’s this, the chemistry section is optional ? Yes,
you can setup a two species tracer simulation with no chemical reactions.

It’s hard to discern from this skeleton example but the mozart preprocessor is in general case insensitive. For instance, in the “general structure”
above you could have the SPECIES line be input as SpEcieS and the preprocessor would still interpret this as the species keyword. Furthermore,
in general, white space is ignored. In “general structure” above there are several blank lines. The preprocessor always ignores blank lines. Just as
you could input the SPECIES line as SpEcieS, you could also input this line as “S pE cie S” and it would be a valid, although less readable.

This is a good point to bring up the basic syntax rules of the mozart preprocessor.

Input lines are limited to 120 characters.
White space at the beginning of a line counts in the character limit.
Input lines greater than 120 characters are truncated and can cause preprocessing errors.
Input lines are rather free form; they may start in any column.
Blank lines are ignored
Lines in which the first character is an "*" are considered comment lines and are ignored.

7.

8.

1.
2.
3.

The valid character set for the mozart preprocessor is the alpha numeric set, letters and numbers, and the following characters: - + * =
 (Note: the “*” can be used as either a comment indicator or as part of a numeric expression such as .)[] < > . : , 2*N2O5

In general white space within an input line is ignored. The important exceptions to this rule are the entries in the “Species” section and
any subsequent specifications dependent on entries in the species section. Of course, sensible white space use makes preprocessor
input files more readable.

“Preprocessor Specs” represents a special set of preprocessor specifications that are different in form than all others. These specify the directory
in which the output files are generated, the mechanism document file name, and location of some needed preprocessor code files.

The following will go through each of the above remanining listed sections in greater detail.

Comments (optional)

Comments
"This is a mozart4 simulation with:"
"(1) The Lin and Rood advection routine"
"(2) mozart inputs"
"(3) New isoprene chemistry"
" added species: CH3OH, C2H5OH, GLYALD, HYAC, EO2, EO, HYDRALD"
End Comments

The comments section is a good, simple starting place.

Purpose

Allows the user to add notes to the preprocessing input file. These notes are also output to the document file.

Syntax and limits

Limit of 100 comment lines. Go over this limit and the preprocessor error halts.
The character set for comments is limited only by what you can type in.
As you can see from above enclosing lines in the comment section within double quotes,
"...", perserves the input line intact; white space and all.
If we had entered the line :
"(2) mozart inputs"
as
(2) mozart inputs
then this line in the document file would look like :
(2)mozartinputs

Species (mandatory)

Species
 Solution
 End Solution

 Fixed
 End Fixed

 Not-Transported
 End Not-Transported

 Col-int
 End Col-int
End SPECIES

This is the general form of the species section. There are 4 sub-sections: , , , and and they mustsolution fixed not-transported col-int
be entered in that order. Only the and sub-sections are optional.not-transported col-int

The sub-section (mandatory)Solution

1.
2.
3.
4.
5.

1.
2.
3.

Solution
 O3, O, O1D -> O, N2O, N, NO, NO2, NO3, HNO3, HO2NO2, N2O5, CH4, CH3O2
 CH3OOH, CH2O, CO, OH, HO2, H2O2, C3H6, ISOP -> C5H8, PO2 -> C3H6OHO2
 CH3CHO, POOH->C3H6OHOOH, CH3CO3, CH3COOOH, PAN -> CH3CO3NO2
 ONIT -> CH3COCH2ONO2, C2H6, C2H4, C4H10, MPAN->CH2CCH3CO3NO2
 ISOPO2 -> HOCH2COOCH3CHCH2, MVK-> CH2CHCOCH3, MACR->CH2CCH3CHO
 MACRO2->CH2CCH3CO3, MACROOH->CH3COCHOOHCH2OH
 MCO3 -> CH2CCH3CO2, C2H5O2, C2H5OOH, C10H16, BIGALK, BIGENE, C3H8
 C3H7O2, C3H7OOH, CH3COCH3, ROOH -> CH3COCH2OOH, CH3OH, C2H5OH
 GLYALD -> HOCH2CHO, HYAC -> CH3COCH2OH, EO2->HOCH2CH2O2
 RO2-> CH3COCH2O2, ISOPNO3 -> CH2CHCCH3OOCH2ONO2, H2, O3S -> O3
 O3INERT -> O3, O3RAD->O3
End Solution

Purpose

Define the solution species. As a part of this input the molecular weight of each solution species is also defined.

Syntax and limits

300 solution species limit per simulation
Solution species are limited to eight alphanumeric characters
Solution species are case sensitive
Solution species "aliases" are limited to 32 alphanumeric characters
Species and “species->alias” may not be broken across lines

The mozart model employs both mass and volumetric mixing ratio units internally. Specifically, only the chemistry modules utilize volumetric
mixing ratio. Thus mozart has to convert to and from volumetric mixing ratios. This requires the molecular weight of each solution species. One
way or another all solution species need to have their symbolic name relate to their chemical composition as represented by the periodic table.
For instance, in the above input ozone is specified as not since the symbol in the periodic table represents atomic oxygen whereas isO3 o3 O o
not represented. Numbers following valid periodic table elements act exactly as you would expect – they indicate quantity. Invalid periodic
elements are ignored in the molecular weight specification; they do not cause a preprocessor error halt.

Note the aliasing mechanism in the solution species sub-section. For example, the entry . Here the solution species labeled PAN -> CH3CO3NO2
 actually represents the compound . Why is this necessary ? Remember: the preprocessor allows only eight characters for thePAN CH3CO3NO2

each solution species. What if I forget to “alias” the species ? In that case the combined molecular weight of phosphorus and atomic nitrogenPAN
will be assigned to PAN (there is no element represent by A and thus it is ignored). And note that the excited

, is aliased to atomic oxygen, . Solution species aliasing is for assigning descriptive names and masses for species withoxygen atom, {{O1D O
long compounds or those such as that don’t properly map into the periodic table. It does not imply that the solution species has chemicalO1D
behavior similar to the alias. That is determined by the chemical reactions in the “chemistry” section.

This is the most critical section of all. A subtle typo here can be hard to track down later. One of the most common errors is to misrepresent the
chemical formulation of a compound. In that case the simulation molecular mass will be erroneous and you may get simulation volumetric mixing
ratios in your outputs that don't correspond to expected values. Note that and are not the same species; the first is carbon monoxide andCO Co
the second is cobalt. While and have the same molecular weight they are two separate species to the preprocessor. As indicatedHNO4 HO2NO2
above you can’t assign ozone the symbol “ ”. However, you could use aliasing to define ozone as :o3
o3 -> O3
Although perfectly valid this construct is not advised. Why not ? Some mozart chemistry subroutines use hardwired species symbols that are
consistent with a direct mapping to the periodic table. Thus some chemistry routines will look for the species symbol “ ” but not “ ”.O3 o3

The sub-section (mandatory)Fixed

 Fixed
 M, N2, O2, H2O
 End Fixed

Purpose

Specify the "fixed" species. Fixed species participate in chemical reactions but their values are assigned not chemically derived. Separate
routines exist to specify their values at each time step during a simulation.

Syntax and limits

300 fixed species limit per simulation
Fixed species are limited to eight alphanumeric characters
The symbol " " represents total atmospheric density and must appear in the Fixed subsectionM

1.
2.

1.
2.

The example fixed sub-section is fairly typical with molecular nitrogen, molecular oxygen, and water vapor declared as fixed species as well as
the mandatory total atmospheric density. Note that unlike the solution species fixed species do not have any periodic table matching requirements
and their molecular weight is not computed.

The *sub-section (optional)Not-Transported

 Not-transported
 OH, ...
 End Not-transported

Purpose

The not-transported sub-section, defines those solution species for which are not transported in CAM.

Syntax and limits

300 not-transported entries per simulation
All not-transported entries must be solution species; they must be entered exactly as specified in the solution species sub-section

The not-transported species are species that have a short chemical life-time relative to the model time step size, e.g., .OH

The* sub-section (optional)Col-int

 Col-int
 O3
 O2
 End Col-int

Purpose

The col-int sub-section, short for column integral, defines those solution species for which a vertical column integral is required.

Syntax and limits

300 col-int entries per simulation
All col-int entries must be either solution or fixed species; they must be entered exactly as specified in the solution or fixed species
sub-section

The example col-int sub-section specifies that and will have column integrals formed in the mozart simulation. If no col-int species areO3 O2
defined then mozart standard code in the photolysis routine will not call any column integral routines. The entries in the col-int example are placed
one per line for clarity. They could have been specified in one line via :
O3, O2

The base photolysis routines in mozart require column integrals for and . A simulation with no photorates normally would not require aO3 O2
col-int section.

Solution Classes (mandatory)

Solution Classes
 Explicit
 End Explicit

 Implicit
 End Implicit

 Rodas
 End Rodas
End Solution Classes

This is the general form of the solution classes section. There are 3 sub-sections: explicit, implicit, and rodas. Solution classes order is immaterial.
Each solution species must be uniquely mapped to one of the three classes. Solution classes partition solution species into distinct chemical
numerical solvers. The list entry “All” may be used for any single solution class to place all the species in that class.

1.
2.

The sub-section (optional)Explicit

 Explicit
 CH4, N2O, C
 End Explicit

Purpose

List of species to be solved via the forward Euler or explicit algorithm. Be careful with this solution class. Note that all the species listed in this
class are presumed to have rather gentle chemistry with longer lifetimes. It would be disastrous to place a highly reactive species such as inOH
the explicit solution class.

Syntax and limits

300 species limit per simulation
All explicit class members must be solution species; they must be entered exactly as specified in the solution or groups sub-section of the
species section

The sub-section (optional)Implicit

 Implicit
 O3, N, NO, NO2, NO3, HNO3, HO2NO2, N2O5, CH3O2
 CH3OOH, CH2O, OH, HO2, H2O2, C3H6, ISOP, PO2, CH3CHO
 POOH, CH3CO3, CH3COOOH, PAN, ONIT, C2H6, C2H4, C4H10, MPAN
 ISOPO2, MVK, MACR, MACRO2, MACROOH
 MCO3, C2H5O2, C2H5OOH, C10H16
 C3H8, C3H7O2, C3H7OOH, CH3COCH3, ROOH
 CH3OH, C2H5OH, GLYALD, HYAC, EO2, RO2, ISOPNO3, O3RAD
 End Implicit

Purpose

Specify all species to be solved via the backward Euler or implicit algorithm. This is the "work horse" solution class. If in doubt put a species in this
class.

Syntax and limits

The limits and syntax rules for the implicit class as the same as those for the explicit class. There is no harm in placing all of the solution species
in the implicit class. This is a good place to use the “all” list option as in :

 Implicit
 All
 End Implicit

The sub-section (optional)Rodas

 Rodas
 End Rodas

Purpose

List all species to be solved via the implicit Rosenbrock solver Rodas. This is the "cadillac " solution class. Again as with the implicit solver class
you may put anything in this class. This class is about twice as expensive as the implicit class and should only be considered for situations where
the implicit solver exhibits repeated converge failure. If you use this class be careful with the per species relative error criterion. Setting too
strigent a criteria, generally < 1.e-3, can cause the computational time to increase greatly.

Syntax and limits

The limits and syntax rules for the rodas class as the same as those for the explicit class. The example preprocessor file does not use the rodas
solver for any species. The mozart model has completed hundreds of simulation years with scientifically acceptable results without ever using the
rodas solver.

Chemistry (optional)

 CHEMISTRY
 Photolysis
 End Photolysis

 Reactions
 End Reactions

 Heterogeneous
 End Heterogeneous

 Ext Forcing
 End Ext Forcing
 END CHEMISTRY

Above is the general form of the chemistry section. There are 4 sub-sections: photolysis, reactions, heterogeneous, and ext forcing. Interestingly,
none of the sub-sections are mandatory. If they exist chemistry sub-sections must follow the ordering indicated above.

The following details general characteristics of both photo and gas phase reactions (Photolysis and Reactions sections).

Reactants and products are limited to eight characters. Reactants are restricted to be either solution species or the fixed species. Any reactant not
in the solution or fixed lists will cause a preprocessor error halt. Any eight character alphanumeric string is allowed for products. Products that are
neither solution or fixed species are flagged in the document file. They are enclosed in the {} pair as in {XYX}, assuming XYX is not a solution or
fixed species.

Reactants may not have an explict coefficient; they always have implied unity coefficients. Reactants are separated from each other by the "+"
operator. Products are separated from each other by either the "+" or "-" operator. It seems strange but you may in essence have negative
products. Blame this on complex hydrocarbon chemistry. Products may have any valid fortran number as a coefficient. Again the default
coefficient is unity. A coefficient, species pair is separated by the "*" operator as in “2.5*OH”. The coefficients are checked for validity and can
cause an error halt. Reactions that do not fit on one input line may be continued on subsequent lines. The first non-blank character of the
continued lines must be a product separator; either "+" or "-". A reaction line must not end with a product separator. All reaction lines must have
whole product and reactant symbols; breaking a reaction line in the middle of a reactant or product will cause a preprocessing error halt. Multi-line
reactions must have at least one product on the first line.

Reactants are separated from products with either the " " or " " operator. Either is allowed in a given reaction. Specifics regarding reactant limits-> =
and gas phase reaction rate constants will be covered in the photolysis and reactions sub-sections below. All reactions may have up to 16
products. Although a photo or gas phase reaction may have no products the reaction must have the “ ” or “ ” reactant, product delimiter.-> =
Reactions involving only fixed species, such as , must have a product even if it is a dummy symbol such as “ ” or “ ”O2 + hv -> … NULL NONE
(assuming that no solution for fixed species is assigned “ ” or “ ”). A reaction with no valid solution or fixed species will cause aNULL NONE
preprocessor error halt.

The "tags" at the beginning of a reaction line, enclosed by the pair, are useful for tagging reactions. These tags can be used to identify[]
individual reactions in the reaction matrix. Thus you can potentially change the order of reactions, add or delete reactions and not have to worry
about the mapping of a given reaction to a location in the fortran reaction array. Tags, required for photorates and optional for gas phase
reactions, are limited to 16 characters not including the enclosing pair.[]

The combined photolysis and gas phase reaction count is limited to 900.

The sub-section (optional)Photolysis

1.
2.
3.
4.
5.
6.
7.
8.
9.

 Photolysis

 [jo2->,jo2_b] O2 + hv -> 2*O
 [jo1d->,jo3_a] O3 + hv -> O1D + O2
 [jo3p->,jo3_b] O3 + hv -> O + O2
 [jn2o] N2O + hv -> O1D + N2
 [jno2] NO2 + hv -> NO + O
 [jn2o5->,jn2o5_a] N2O5 + hv -> NO2 + NO3
 [jhno3] HNO3 + hv -> NO2 + OH

 [jbigald->,.2*jno2] BIGALD + hv -> .45*CO + .13*GLYOXAL + .56*HO2 + .13*CH3CO3 + .18*CH3COCHO
 [jch3ooh] CH3OOH + hv -> CH2O + HO2 + OH
 [jch2o_a] CH2O + hv -> CO + 2 * HO2
 [jch2o_b] CH2O + hv -> CO + H2
 [jh2o2] H2O2 + hv -> 2*OH
 [jch3cho] CH3CHO + hv -> CH3O2 + CO + HO2
 [jpooh->,jch3ooh] POOH + hv -> CH3CHO + CH2O + HO2 + OH

*--
* photo-ionization
*--
 [jeuv_1=userdefined,userdefined] O + hv -> Op + e
 [jeuv_2=userdefined,userdefined] O + hv -> Op + e
 [jeuv_3=userdefined,userdefined] O + hv -> Op + e

 End Photolysis

Purpose

Specify the photolysis reactions. Photolysis reactions have one and only one true reactant. They must have the "hv" symbol as a symbolic second
“place holder” reactant.

Syntax and limits

Up to 900 photo and gas phase reactions per simulation
Reactants must be solution or fixed species
Reactants understood to have unity coefficients; no reactant coefficients allowed
16 products allowed
"hv" symbol required as second reactant
No explicit rate constant may be assigned (see rate constant information in the reactions section below)
aliases can be assigned with the "->" or "=" symbol followed by long wave and short wave aliases which are separated by a comma
an alias can be "userdefined" which requires special code in the photolysis routine
an alias can include a numeric multiplication factor

Alias Tagging

[alias_tag{=,->short_coeff*short_alias_tag,long_coeff*long_alias_tag}]

the {,} pair signify optional entries and are not part of the photorate aliasing syntax
Only the enclosing [,] pair and the alias_tag are required. In this case the photorate alias is acting as "pure" tag as in : [jh2o2].
If the photrate tag is to infer an aliasing then either the the "=" or "->" string must separate the alias_tag from the short, long alias tags.
The short,long coefficients, if present, must be valid fortran90 numbers; integers are fine as in 2*.
The short,long aliases must refer to an existing photorate alias_tag that precedes the alias_tag in the preprocessor input file (either or
both short, long aliases may be set to the alias_tag as in : [jno2 = 1.23*jno2]).
If only short aliasing is desired the "," separating the short, long aliases must NOT be present as in : [jn2o5->jno3]
If only long aliasing is desired the "," separating the short, long aliases must be the first character after the the {=,->} delimiter as in :
[jn2o5=,2.5*jhno3]

The sub-section (optional)Reactions

 Reactions
 [usr1] O + O2 + M -> O3 + M
 O + O3 -> 2*O2 ; 8e-12, -2060
 [o1d_n2] O1D + N2 -> O + N2 ; 1.8e-11, 110
 [o1d_o2] O1D + O2 -> O + O2 ; 3.2e-11, 70
 [o3_l1] O1D + H2O -> 2*OH ; 2.2e-10
 N2O + O1D -> 2*NO ; 6.7e-11
 N2O + O1D -> N2 + O2 ; 4.9e-11
 [o3_p1] NO + HO2 -> NO2 + OH ; 3.5e-12, 250
 NO + O3 -> NO2 + O2 ; 3e-12, -1500
 NO2 + O -> NO + O2 ; 5.6e-12, 180
 NO2 + O3 -> NO3 + O2 ; 1.2e-13, -2450
 NO3 + HO2 -> OH + NO2 ; 2.3e-12, 170.
 [usr2] NO2 + NO3 + M -> N2O5 + M ; 2.e-30,4.4, 1.4e-12,.7, .6
 [usr3] N2O5 + M -> NO2 + NO3 + M
 N2O5 + H2O -> 2*HNO3 ; 0.
 [usr4] NO2 + OH + M -> HNO3 + M ; 2.4e-30,3.1, 1.7e-11,2.1, .6
 [usr5] HNO3 + OH -> NO3 + H2O
 NO3 + NO -> 2*NO2 ; 1.5e-11, 170
 [usr6] NO2 + HO2 + M -> HO2NO2 + M ; 1.8e-31,3.2, 4.7e-12,1.4, .6
 HO2NO2 + OH -> H2O + NO2 + O2 ; 1.3e-12, 380
 [usr7] HO2NO2 + M -> HO2 + NO2 + M
 CH4 + OH -> CH3O2 + H2O ; 2.45e-12, -1775
 CH4 + O1D -> .75*CH3O2 + .75*OH + .25*CH2O + .4*HO2 + .05*H2 ; 1.5e-10
 [o3_p2] CH3O2 + NO -> CH2O + NO2 + HO2 ; 3.e-12, 280
 [usr11] CH3CO3 + NO2 + M -> PAN + M ; 8.5e-29,6.5, 1.1e-11,1., .6
 CH3CO3 + HO2 -> .7*CH3COOOH + .3*CH3COOH + .3*O3 ; 4.3e-13, 1040
 CH3CO3 + CH3O2 -> .9*CH3O2 + CH2O + .9*HO2 + .9*CO2 + .1*CH3COOH ; 1.3e-12,640
*--
* note the reaction immediately below is and will not"commented out"
* be in the reaction mechanism
*--
* CH3COOOH + OH -> CH3CO3 + H2O ; 1e-12
 CH3COOOH + OH -> .5*CH3CO3 + .5*CH2O + .5*CO2 + H2O ; 1e-12
 [usr12] PAN + M -> CH3CO3 + NO2 + M
 CH3CO3 + CH3CO3 -> 2*CH3O2 + 2*CO2 ; 2.5e-12, 500
 [o3_l5] ISOP + O3 -> .4*MACR + .2*MVK + .07*C3H6 + .27*OH ; 1.05e-14, -2000
 + .06 * HO2 + .6 * CH2O + .3 * CO + .1 * O3
 + .2 * MCO3 + .2 * CH3COOH
 OH + C2H6 -> C2H5O2 + H2O ; 8.7e-12, -1070
 [O3_p5] C2H5O2 + NO -> CH3CHO + HO2 + NO2 ; 2.6e-12, 365
 C2H5O2 + HO2 -> C2H5OOH + O2 ; 7.5e-13, 700
 C2H5O2 + CH3O2 -> .7 * CH2O + .8 * CH3CHO + HO2 ; 2.e-13
 + .3 * CH3OH + .2 * C2H5OH
 C2H5O2 + C2H5O2 -> 1.6*CH3CHO + 1.2*HO2 + .4*C2H5OH ; 6.8e-14
 C2H5OOH + OH -> .5*C2H5O2 + .5*CH3CHO + .5*OH ; 3.8e-12, 200
 End Reactions

Purpose

Specify all gas phase reactions. Gas phase reactions must have at least one reactant and may have up to three reactants. All reactants must be
either solution or fixed species. If a reaction has three reactants then at most two can be solution species and at least one must be a fixed
species. For example, if OH and HO2 are solution species, the following is an invalid gas phase
reaction :

OH + OH + HO2 -> H2O2

Gas phase reactions may additionally define rate constants. Rate constants are delimited from reaction products by the ";" character. There are
two types of rate constants; arrenhius and troe.

The general Arrenhius rate constant is of the form:

a0 * exp(b0/t)

where and are constants to be specified and t is temperature(K).a0 b0

An example is:

1.
2.
3.
4.
5.

C2H5O2 + HO2 -> C2H5OOH + O2 ; 7.5e-13, 700

where and ; the rate constant is .a0 = 7.5e-13 b0 = 700 7.5e-13*exp(700/t)

Rate constants and are checked for fortran numeric validity. They may be positive or negative.a0 b0

NOTE: The JPL book provides A and (E/R) in , whereas here .k(T) = A*exp ((-E/R) (1/T)) b0 = (-E/R)

A temperature independent arrenhius rate only has the term as in :a0

CH3COOOH + OH -> .5*CH3CO3 + .5*CH2O + .5*CO2 + H2O ; 1e-12

where:

a0 = 1e-12

Each arrenhius rate constant parameter { } is limited to 16 characters. Parameters are delimited by the "," character.a0, b0

The general troe rate constant is of the form :

 alpha**x/(1+beta**2)
where:
 alpha = k0*M/kinf
 beta = log10(alpha)
 M = total atmospheric density (molecules/cm**3)
 x = "exponential factor"
 k0 = a0*(300/t)**a1
 kinf = b0*(300/t)**b1
 t = temperature (degrees Kelvin)

a0, a1, x, b0, b1 are rate constant inputs to be specified in that order as in :

[usr11] CH3CO3 + NO2 + M -> PAN + M ; 8.5e-29, 6.5, 1.1e-11, 1., .6

Here , , , , and a0 = 8.5e-29 a1 = 6.5 b0 = 1.1e-11 b1 = 1. x = .6

Each troe rate constant parameter { } is limited to 16 characters. Parameters are delimited by the "," character.a0, a1, x, b0, b1

Whether arrenhius or troe rates, the reaction rate constants must be input on the first line of a multi-line reaction.

Gas phase reactions with no specified rate constant are labeled as "user defined" in the document file and their rate constant must be supplied in
a user supplied subroutine(mo_usrrxt.F90). Failure to supply a rate constant for such a reaction can lead to a bogus simulation. At best the
simulation will rapidly break down with some sort of runtime exception. At worst the simulation will complete without incident, however the results
will be erroneous.

Syntax and limits

Up to 900 photolysis and gas phase reactions limit per simulation
Reactants must be solution or fixed species
Limit of two solution species reactants per reaction
Reactants understood to have unity coefficients; no reactant coefficients allowed
16 products allowed

The sub-section (optional)Heterogeneous

 Heterogeneous
 H2O2, HNO3, CH2O, CH3OOH, POOH, CH3COOOH, HO2NO2, ONIT, MVK, MACR,
 C3H7OOH, ROOH, CH3COCHO, Pb, MACROOH, XOOH, ONITR, ISOPOOH
 CH3OH, C2H5OH, GLYALD, HYAC, HYDRALD, CH3CHO, ISOPNO3
 End Heterogeneous

Purpose

List all solution species that are removed by wet deposition(washout).

Although this section is optional only species listed in the Heterogeneous sub-section will undergo wet removal in the simulation.

Syntax and limits

1.
2.
3.

1.
2.
3.

Up to 300 heterogeneous entries
Only solution species allowed
Each individual species must appear only once

The sub-section (optional)Ext Forcing

 Ext Forcing
 NO <- dataset, CO <- dataset, CH4
 End Ext Forcing

Purpose

Specify all solution species that have "external" or in situ (vertically distributed) chemical forcing and if applicable declare a solution species to use
input from a dataset in forming the external forcing.

Although this section is optional only species listed in the Ext forcing sub-section will have external forcing in the simulation.

Syntax and limits

Up to 300 ext forcing entries
Only solution species allowed
Each individual species must appear only once

In the above example and will use values read in from a dataset while doesNO CO CH4
not.

MOZART4_preprocessor.pdf
pht_tags.txt

https://wiki.ucar.edu/download/attachments/52855728/MOZART4_preprocessor.pdf?version=1&modificationDate=1271713065000
https://wiki.ucar.edu/download/attachments/52855728/pht_tags.txt?version=1&modificationDate=1273016547000

