Modelled and observed multi-decadal variability in the North Atlantic jet stream and its connection to Sea Surface Temperatures

Isla Simpson
Clara Deser, Karen McKinnon, Elizabeth Barnes

1: Climate and Global Dynamics Laboratory, NCAR
2: Department of Atmospheric Science, CSU
Previous studies have argued that Global Climate Models underestimate multi-decadal variability in the North Atlantic jet stream, as viewed through the wintertime North Atlantic Oscillation (NAO)

Previous studies have argued that Global Climate Models underestimate multi-decadal variability in the North Atlantic jet stream, as viewed through the wintertime North Atlantic Oscillation (NAO)

The focus of this study: to dig further into the details of this discrepancy with a view to understanding it.
A simple measure of multi-decadal variability in the North Atlantic jet stream
A simple measure of multi-decadal variability in the North Atlantic jet stream

- Consider 700hPa zonal wind (U700)
A simple measure of multi-decadal variability in the North Atlantic jet stream

- Consider 700hPa zonal wind (U700)
- At each grid point take the monthly time series of U700 for a given month
A simple measure of multi-decadal variability in the North Atlantic jet stream

- Consider 700hPa zonal wind (U700)
- At each grid point take the monthly time series of U700 for a given month
- Calculate the 20 year running mean
A simple measure of multi-decadal variability in the North Atlantic jet stream

- Consider 700hPa zonal wind (U700)
- At each grid point take the monthly time series of U700 for a given month
- Calculate the 20 year running mean
- Calculate its standard deviation
20 year running means

ERA20C, DJFM

ERA20C reanalysis

DJFM
1920-2010
20 year running means

ERA20C, DJFM

ERA20C reanalysis

LENSE hist, DJFM

CESM LENS

DJFM
1920-2010
20 year running means

ERA20C, DJFM

LENSES hist, DJFM

ERA20C - LENSES, DJFM

ERA20C reanalysis

CESM LENS

DJFM

1920-2010

ERA20C-CESM LENS

U700 standard deviation (m/s)
20 year running means

ERA20C, DJFM

ERA20C reanalysis

LENSS hist, DJFM

CESM LENS

ERA20C - LENS, DJFM

ERA20C-CESM LENS

DJFM
1920-2010

Grey = ERA20C lies within the distribution of individual LENS members.
20 year running means
20 year running means

Progressively more variability over the North Atlantic ocean toward the late winter
20 year running means

Progressively more variability over the North Atlantic ocean toward the late winter

Can have confidence in this because it looks the same in different reanalyses and can also see associated variability in in-situ measurements of precip in March.
20 year running means

ERA20C, DJFM
ERA20C, DEC
ERA20C, JAN
ERA20C, FEB
ERA20C, MAR

LENs hist, DJFM
LENs hist, DEC
LENs hist, JAN
LENs hist, FEB
LENs hist, MAR

ERA20C - LENs, DJFM

U700 standard deviation (m/s)
20 year running means
Large discrepancies in the low frequency variability in U700 over the North Atlantic in late winter. March, and to a lesser extent February.
Large discrepancies in the low frequency variability in U700 over the North Atlantic in late winter. March, and to a lesser extent February

- True of virtually all CMIP5 models
- True for timescales beyond about a 10 year running mean
What gives rise to the multi-decadal variability seen in the North Atlantic jet stream in the reanalysis in late winter?
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.
Possibility 1:
The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability

Modelled and observed interannual standard deviations are very. ERA20C lies within the LENS distribution
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability
- The observed sequence of high frequency variability, and resulting low frequency variability was an unlikely occurrence

Modelled and observed interannual standard deviations are very. ERA20C lies within the LENS distribution
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability

 Modelled and observed interannual standard deviations are very. ERA20C lies within the LENS distribution

 or

- The observed sequence of high frequency variability, and resulting low frequency variability was an unlikely occurrence
What are the chances of obtaining the multi-decadal variability observed through the chance sampling of white noise with a standard deviation equal to that of the interannual variability?

Compare with synthetic white noise time series of equivalent length to the observational record.

(Similar conclusions hold if red noise time series are considered)
20 year running means
20 year running means

[Images of maps showing temperature variations across different months and years.]

= not significantly different from white noise at the 95% level
(accounting for spatial correlation by the method of Wilks (2016))

(Similar picture if you assume a red noise time series since the lagged autocorrelation from one year to the next is typically less than 0.2)
20 year running means

= not significantly different from white noise at the 95% level
(accounting for spatial correlation by the method of Wilks (2016))

(Similar picture if you assume a red noise time series since the lagged autocorrelation from one year to the next is typically less than 0.2)

0.04% chance
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability

 Modelled and observed interannual standard deviations are very. ERA20C lies within the LENS distribution

 or

- The observed sequence of high frequency variability, and resulting low frequency variability was an unlikely occurrence
Possibility 1:

The variability arises as a result of the chance sampling of higher frequency (interannual) variability, with no need to invoke an underlying low frequency forcing.

Either...

- Models are deficient in their representation of high frequency variability

 Modelled and observed interannual standard deviations are very. ERA20C lies within the LENS distribution

 0.04% chance

- The observed sequence of high frequency variability, and resulting low frequency variability was an unlikely occurrence
To explain the multi-decadal variability that’s been seen in the reanalysis, we would need to invoke some underlying low frequency forcing.
To explain the multi-decadal variability that’s been seen in the reanalysis we would need to invoke some underlying low frequency forcing

- Internal coupled ocean-atmosphere processes (SSTs)
- External forcings
To explain the multi-decadal variability that’s been seen in the reanalysis, we would need to invoke some underlying low frequency forcing.

- Internal coupled ocean-atmosphere processes (SSTs)

External forcings
To explain the multi-decadal variability that’s been seen in the reanalysis we would need to invoke some underlying low frequency forcing.

- **Internal coupled ocean-atmosphere processes (SSTs)**
- **External forcings**

(and the models must not be responding in the same way to this forcing)
Variability in this box in the North Atlantic (U700NA)
Variability in this box in the North Atlantic (U700NA)

March, U700NA

- raw

20thC reanalysis + ERA-Interim
Variability in this box in the North Atlantic (U700NA)

March, U700NA

- **raw**
- **20y means**

20thC reanalysis + ERA-Interim
Variability in this box in the North Atlantic (U700NA)

Correlation between U700NA and ERSSTv5 SST’s (20y running means)

Stippling – significant at the 95% level
Variability in this box in the North Atlantic (U700NA) raw 20y means 20thC reanalysis + ERA-Interim Correlation between U700NA and ERSSTv5 SST’s (20y running means) Stippling – significant at the 95% level

Looks like the pattern of SST variability associated with Atlantic Multi-decadal Variability (AMV/AMO) on these timescales

Correlation between U700NA and ERSSTv5 SST’s (20y running means) Stippling – significant at the 95% level
Correlation between Trenberth and Shea (2006) AMV index and U700NA (Blue – significant at 95% level after accounting for reduced degrees of freedom)
We know that atmospheric circulation variability plays an important role in driving the AMV (e.g., Yeager and Danabasoglu 2014, Delworth and Zeng 2016)
CESM Initialized decadal prediction large ensemble (Yeager 2018)

Initialized with observation based ocean and sea ice states every November from 1954-2015
CESM Initialized decadal prediction large ensemble (Yeager 2018)

Initialized with observation based ocean and sea ice states every November from 1954-2015

Decadal prediction (10 year lead time), SST

- CESM decadal predictions (individual)
- CESM decadal predictions (mean)
- OBS (ERSSTv5/ ERA20C+ERA-Interim)

Prediction of March SSTs in the sub-polar gyre region at 10 year lead time
CESM Initialized decadal prediction large ensemble (Yeager 2018)

Initialized with observation based ocean and sea ice states every November from 1954-2015

Prediction of March U700NA at 5 year lead time
March Winds

AMV
March Winds

AMV
March Winds

X

AMV

March Winds

AMV
In observations, there’s evidence for AMV driving multi-decadal variability in the March winds. The model doesn’t seem to capture this connection.
In observations, there's evidence for AMV driving multi-decadal variability in the March winds. The model doesn't seem to capture this connection. True also of simulations with prescribed SSTs (see also Kim et al 2017).
Conclusions

- Modelled multi-decadal variability in the North Atlantic jet stream is entirely consistent with the sampling of white noise year-to-year variability.

- Reanalyses, on the other hand, show greatly enhanced multi-decadal variability in the late winter (March in particular).

- This March variability is strongly connected to SST anomalies that resemble Atlantic Multidecadal Variability/Oscillation (AMV/AMO).

- Various lines of reasoning can be used to argue that this connection represents a driving of the winds by the SSTs. In particular, CESM decadal predictions can predict the relevant SSTs at 10 year lead time, without predicting the March winds → their instantaneous connection does not represent a driving of the SSTs by the winds.

- In the late winter, models do not appear to respond to AMV SST variability in the same way that the real world does.

- Mechanisms remain to be understood.
(e) March time series, unfiltered

Cor(AMV,U700NA) = -0.24, 95% significant

(f) March time series, 20y running means

Cor(AMV,U700NA) = -0.86, 95% significant