The use of a reliability budget with CESM-DART to discern model biases

Jonathan Eliashiv*,§, Aneesh Subramanian§, Arthur J Miller§

*Corresponding Author email: jeliashi@ucsd.edu
§Corresponding affiliation: Scripps Insititution of Oceanography, UCSD, San Diego
The CESM-DART coupled assimilation system

Model: CESM1 global coupled @ nominal 1°
Method: 30 member DART/EAKF
Observations:
OCN: in-situ T/S (daily)
ATM: temp and winds (6-hourly)*
*radiosondes, aircraft, satellite drift winds, GPSRO-COSMIC
Duration: 1970 - 1981
Data: monthly history files + 6-hr/daily instantaneous + restarts
Reliability Budget (Rodwell et al)

\[
\frac{1}{n-1} \sum_{j=1}^{n} (\bar{x}_j - x_{Oj})^2 = \frac{1}{n(n-1)} \left(\sum_{j=1}^{n} (\bar{x}_j - x_{Oj}) \right)^2 + \frac{m+1}{mn(m-1)} \sum_{j=1}^{n} \sum_{i=1}^{m} (x_{ij} - \bar{x}_j)^2 + \frac{1}{nm} \sum_{j=1}^{n} \sum_{i=1}^{m} e_{Oij}^2 + R
\]

(Depar^2) (Bias^2) (EnsVar) (ObsUnc^2) (Residual)

Sources of Data

<table>
<thead>
<tr>
<th>CAM (BUFR)</th>
<th>POP (WMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Communications Addressing and Reporting System</td>
<td>Bottle Measurements</td>
</tr>
<tr>
<td>• Wind Speed and direction</td>
<td>• Temperature</td>
</tr>
<tr>
<td>Aircraft Reports</td>
<td>• Salinity</td>
</tr>
<tr>
<td>• Wind Speed and direction</td>
<td>CTD Measurements</td>
</tr>
<tr>
<td>• Temperature</td>
<td>• Temperature</td>
</tr>
<tr>
<td>Radiosonde Data</td>
<td>• Salinity</td>
</tr>
<tr>
<td>• Wind Speed and direction</td>
<td>DBT Bottle Measurements</td>
</tr>
<tr>
<td>• Temperature</td>
<td>• Temperature</td>
</tr>
<tr>
<td>Satellite Data</td>
<td>MBT Bottle Measurements</td>
</tr>
<tr>
<td>• Wind Speed and direction</td>
<td>• Temperature</td>
</tr>
<tr>
<td></td>
<td>XBT Bottle Measurements</td>
</tr>
<tr>
<td></td>
<td>• Temperature</td>
</tr>
</tbody>
</table>
Structure of the Reliability Budget

Combined Wind Magnitude

Combined Temperature
Structure of the Reliability Budget

Combined Wind Magnitude

Combined Temperature
Structure of the Reliability Budget

Combined Wind Magnitude

Combined Temperature
Structure of the Reliability Budget

Combined Wind Magnitude Climatology

Combined Temperature Climatology
Structure of the Reliability Budget

Combined Wind Magnitude Climatology

Combined Temperature Climatology
Structure of the Reliability Budget

Differences in Reliability Budget responses

- Pacific Ocean during MJO
- Indian Ocean during MJO
- Pacific Ocean without MJO
- Indian Ocean without MJO

Variables:
- Δ Departure2
- $10^*\Delta$ Bias2
- Δ Ens. Var.
- Δ Obs. Unc.2
- Δ Residual

Units: m2 s$^{-2}$
Review

- Southern hemisphere tropics have an increased variance in all parts of the reliability budget.
- Upper troposphere has more departure than the lower troposphere.
- MJJ provides the most decrease in departure while NDJ provides the most increase.
- Bias dominates the contribution to the full departure, while ensemble variance and observation uncertainty remain at similar magnitudes.
- MJO events cause a reduction in the total departure.
Questions?
CESM-DART vs other reanalyses

Surface Flux Anomaly bias against OA Flux

Latent Heat (Nf = 60W/m²)
Sensible Heat (Nf = 20W/m²)
Surface Wind Stress (Nf = 0.1W/m²)

GPCP Error Estimate

CESM/DART - GPCP difference

Precipitation Error (mm/day)

ERA 20C - GPCP difference

NCAR R1 - GPCP difference

Normalized Flux
MJO Response