Evaluating the Physics at a Lower Resolution in CAM-SE-CSLAM

Advanced Study Program
Sponsor: Peter H. Lauritzen
Collaborator: Steve Goldhaber

Ph.D Advisor: Kevin A. Reed
(MWIR, in review)

\textbf{Dynamics}

\begin{align*}
np &= 4 \\
\text{CSLAM} &= 3 \times 3
\end{align*}

\textbf{Tracer Transport}

\begin{align*}
A_1 & \quad A_2 & \quad A_3 \\
A_4 & \quad A_5 & \quad A_6 \\
A_7 & \quad A_8 & \quad A_9
\end{align*}

\textbf{Physics}

\begin{align*}
pg &= 3 \\
pg &= 2
\end{align*}

\textbf{neXXpg3'}

\begin{align*}
A_1 & \quad A_2 & \quad A_3 \\
A_4 & \quad A_5 & \quad A_6 \\
A_7 & \quad A_8 & \quad A_9
\end{align*}

\textbf{neXXpg2'}

\begin{align*}
A_1 & \quad A_2 & \quad A_3 \\
A_4 & \quad A_5 & \quad A_6 \\
A_7 & \quad A_8 & \quad A_9
\end{align*}
(MWR, in review)

\[\text{np} = 4 \]

\[\text{CSLAM} = 3 \times 3 \]

\[\text{pg} = 3 \]

\(\text{neXXpg3} \)

\(\text{neXXpg2} \)
Fix Dynamics, Decrease Topo Res.
(but, same smoothing radius – C92)

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

Dynamics Grid Spacing
- Hyper-Viscosity Scaling
- Topographic Smoothing Radius

Physics Grid Spacing:
- Topography lives here
- Physics evaluated here
Fix Dynamics, Decrease Topo Res.
(but, same smoothing radius – C92)
Fix Dynamics, Decrease Topo Res.
(but, same smoothing radius – C92)
Fix Dynamics, Decrease Topo Res.
(but, same smoothing radius – C92)
Let's talk about moisture

Need to do some tricks to conserve mass while maintaining shape preservation (CSLAM <-> pg2).

Scale the mixing ratio tendencies by **available mass**, above which does not produce local extremes (shape preserving, preserves linear correlations and mass).

OK, now we are ready to for some CAM6 aqua-planet** results. But first, what is the expected sensitivity to grid resolution?

** Special thanks to all involved in the CESM2 Simple Models compsets
Theory...

Equations of Motion have inherent scale dependencies at hydrostatic scales

Vertical velocity scale due to the Archimedes Buoyancy, B_0

$$W = \sqrt{B_0 H H / D}$$

**Assume $D \sim \Delta x$, B_0 and H are const

$$W_2 = \frac{W_1}{\alpha}, \alpha = \frac{\Delta x_2}{\Delta x_1}$$

Orlanski 1981; Jeevanjee and Romps (2015); Herrington and Reed (2018)
Scaling across the board

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne60pg3</td>
<td>55.6km</td>
<td>150s</td>
<td>55.6km</td>
<td>900s</td>
</tr>
<tr>
<td>ne120pg3</td>
<td>27.8km</td>
<td>75s</td>
<td>27.8km</td>
<td>450s</td>
</tr>
</tbody>
</table>

Forcing Scale

PDF upward motion

$P(\omega_1) = \alpha \times P(\omega_0/\alpha)$ (scaled to ne120pg3)
Equations of Motion have inherent scale dependencies at hydrostatic scales

Assume \(D \sim \Delta x \), \(B_0 \) and \(H \) are cnst

\[
W = \frac{W_1}{\alpha}, \quad \alpha = \frac{\Delta x_2}{\Delta x_1}
\]

Orlanski 1981; Jeevanjee and Romps (2015); Herrington and Reed (2018)
ne20pg3 v. ne30pg2: are they the same?

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne20pg3</td>
<td>166.8km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

PDF upward motion

\[P(\omega_1) = \alpha \cdot P(\omega_0/\alpha) \] (scaled to ne30pg3)

Scaled by Δx_{PHYS}
ne20pg3 v. ne30pg2: are they the same?

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne20pg3</td>
<td>166.8km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>*ne20 viscosity coefficients, for clean comparison</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

PDF upward motion

$$P(\omega_1) = \alpha \times P(\omega_0/\alpha)$$
(scaled to ne30pg3)

Scaled by Δx_{phys}
ne20pg3 v. ne30pg2: are they the same?

At $\Delta x_{\text{PHYS}} / \Delta x_{\text{DYN}} = 1.5$, ‘D’ can only be proportional to Δx_{PHYS} if hyper-viscosity coeff. scales with Δx_{PHYS}

PDF upward motion

$$P(\omega_1) = \alpha \times P(\omega_0 / \alpha)$$
(scaled to ne30pg3)
The Ambiguity of the Grid-Scale

Velocity Scale is insensitive to small departures of Δx_{PHYS} from Δx_{DYN} due to the efficiency of hyper-viscosity operators near the grid-scale.

Example hyper-viscosity response function near the grid scale (Whitehead et al. 2011)
Low vs. High order mapping

<table>
<thead>
<tr>
<th>Grid name</th>
<th>(\Delta x_{dyn})</th>
<th>(\Delta t_{dyn})</th>
<th>(\Delta x_{phys})</th>
<th>(\Delta t_{phys})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

*low order mapping (bilinear in pg2->dyn, PCoM in CSLAM<->pg2)

Forcing Scale (on phys)

Forcing Scale (on dyn)
Low vs. High order mapping

<table>
<thead>
<tr>
<th>Grid name</th>
<th>$\Delta x_{dy}n$</th>
<th>$\Delta t_{dy}n$</th>
<th>$\Delta x_{ph}ys$</th>
<th>$\Delta t_{ph}ys$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg3</td>
<td>111.2km</td>
<td>300s</td>
<td>111.2km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

*low order mapping (bilinear in pg2->dy, PCoM in CSLAM<->pg2)

Forcing Scale (on dyn)

PDF upward motion
Low vs. High order mapping

Due to the high-order mapping, the forcing scale in neXXpg2 is very similar to neXXpg3
What about the mean state?

Mass weighted, area averages +/- 10 deg from equator, 1 year means

\[\bar{\omega} = \bar{f}_u \ast \bar{\omega}_u + \bar{f}_d \ast \bar{\omega}_d \]

Blue = neXXpg2 Diamond : zm_conv_cin = 5
Red = neXXpg3 Cross : zm_conv_cin = 1
What about the mean state?

Mass weighted, area averages +/- 10 deg from equator, 1 year means

\[
\bar{\omega} = \bar{f}_u \ast \bar{\omega}_u + \bar{f}_d \ast \bar{\omega}_d
\]

Blue = neXXpg2 Diamond : zm_conv_cin = 5
Red = neXXpg3 Cross : zm_conv_cin = 1
What about the mean state?

Mass weighted, area averages +/- 10 deg from equator, 1 year means

$$\bar{\omega} = \bar{f}_u \ast \bar{\omega}_u + \bar{f}_d \ast \bar{\omega}_d$$

Blue = neXXpg2 Diamond : zm_conv_cin = 5
Red = neXXpg3 Cross : zm_conv_cin = 1
What about the mean state?
What about the mean state?

Bacmeister et al. (2014) finds the double-ITCZ doubles-down going from 1 deg. ->0.25 deg in a PD run.
Conclusions

• Noise from topography is reduced in neXXpg2, relative to neXXpg3
 • $1.5 \Delta x_{\text{DYN}}$ control volumes smooth noisy boundary nodes
 • each control volume has an equal sampling of node types

• In aqua-planets, W, and therefore Forcing Scale (‘D’), do not scale with Δx_{PHYS}, but rather Δx_{DYN}. This is in part due to h.o. mapping of phys. tendencies, but primarily a result of ambiguity in the ‘near grid-scale’ thanks to hyper-viscosity
 • Here, $\Delta x_{\text{PHYS}} / \Delta x_{\text{DYN}}$ is no greater than 1.5
 • Williamson (1999) takes it to ~ 2.5, where it does seem like Δx_{PHYS} is influencing W in a substantial way

• After optimization of the mapping code
 • 25% cost savings in CAM6
 • Would ne60pg2 be in reach of widespread use?
 (6X more expensive than ne30pg3, instead of 8X)
Grid Spacing

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne20pg3</td>
<td>166.8km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2km</td>
<td>300s</td>
<td>166.8km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

Dynamics Grid Spacing
- Hyper-Viscosity Scaling
- Topographic Smoothing Radius

Physics Grid Spacing
- Topography lives here
- Physics evaluated here
Fix Topography, Increase Dynamics

(but, same smoothing radius – C138)

<table>
<thead>
<tr>
<th>Grid name</th>
<th>Δx_{dyn}</th>
<th>Δt_{dyn}</th>
<th>Δx_{phys}</th>
<th>Δt_{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne20pg3</td>
<td>166.8 km</td>
<td>300s</td>
<td>166.8 km</td>
<td>1800s</td>
</tr>
<tr>
<td>ne30pg2</td>
<td>111.2 km</td>
<td>300s</td>
<td>166.8 km</td>
<td>1800s</td>
</tr>
</tbody>
</table>

- same topography file (same smoothing radius, C138)

- Increase dynamics resolution from 166.8 km -> 111.2 km (viscosity coefficients scaled)
Scaling ‘D’ with Δx_{DYN}: idealized test

Simple rising moist plume experiments (Herrington and Reed 2018)
Scaling ‘D’ with Δx_{DYN} : idealized test

Simple rising moist plume experiments (Herrington and Reed 2018)

Vary ‘D’ in proportion to Δx_{DYN}:

*Grey lines,

$$W_2 = W_1 \times \Delta x_1 / \Delta x_2$$
Sensitivity to ‘D’ at fixed Δx_{DYN}

Simple rising moist plume experiments (Herrington and Reed 2018)

Grey lines, $W_2 = W_1 \frac{\Delta x_1}{\Delta x_2}$