The influence of carbon, climate, and humans on energy and land

Kate Calvin, Ben Bond-Lamberty, Andy Jones, Alan Di Vittorio, Xiaoying Shi

CESM Workshop
Boulder, CO
June 22, 2017
Motivation
Human activity has a significant effect on the climate system.

Source: IPCC AR5. WG1. Ch. 12.
Changes in climate affect the productivity of crops and other ecosystems.

Source: IPCC AR5. WG2. Ch. 7.
These changes in ecosystem productivity affect land use and land cover decisions.

Change in Land Cover due to Climate Impacts

Source: Nelson et al. (2014) (redrawn)
The integrated Earth System Model (iESM)

- iESM couples the human components of GCAM with the CESM.
- Information between components is exchanged every 5 years.
- Current information exchange focuses on the carbon cycle.
- Can explore 1-way or 2-way feedbacks.
- Code is available at: www.github.com/ACME-Climate/iESM

An initial experiment using iESM showed increases in land productivity.

Questions:

1) What is the relative influence of CO₂ fertilization versus climate change?

2) How do those different factors influence human systems?

3) And, how do those changes feedback to the climate?

Decomposing the Effects of Climate, CO$_2$, and Humans
Experiment Design

- Decompose the effects of climate, CO₂, and humans, using a C4MIP style protocol.

- Simulations:

<table>
<thead>
<tr>
<th>RF</th>
<th>Configuration</th>
<th>Humans?</th>
<th># of Ensembles</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP8.5</td>
<td>Climate & CO₂</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Concentration-forced)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP8.5</td>
<td>Climate & CO₂</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Concentration-forced)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP8.5</td>
<td>CO₂ Only</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>CO₂ Only</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>Climate Only</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>Climate Only</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>
With both CO₂ and Climate, the productivity of land increases.
Both CO$_2$ and Climate increase productivity individually...

Change in Yield due to Climate, CO$_2$ or Both

- **Corn**
 - Climate Only
 - CO$_2$ + Climate
 - CO$_2$ Only

- **Forest**
 - Climate Only
 - CO$_2$ + Climate
 - CO$_2$ Only

% Change from due to Feedbacks

Year

2010 2040 2070

Change in Yield due to Climate, CO$_2$ or Both
But, there are regional differences, with some seeing productivity decreases.

Average Change in Wheat Yield in the 2080s
When faced with a decline in yield, regions tend to reduce cropland area.

Correlation between Land & Yield in 2090

- Data points are color-coded:
 - Orange: Climate Only
 - Blue: CO2 + Climate
 - Green: CO2 Only

Graph illustrates the correlation between changes in yield and changes in land due to climate and/or CO2.
In most parts of the world, cropland area declines in all three scenarios.

Average change in cropland in the 2080s
All three scenarios show declines in global cropland area.
These changes have implications for energy use...

Change in Energy Use due to Climate and/or CO$_2$

<table>
<thead>
<tr>
<th>Year</th>
<th>c coal</th>
<th>d biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>-10</td>
<td>-5</td>
</tr>
<tr>
<td>2070</td>
<td>-10</td>
<td>0</td>
</tr>
</tbody>
</table>

Energy (EJ/yr)

- Green: Climate Only
- Orange: CO$_2$ + Climate
- Purple: CO$_2$ Only

ACME Accelerated Climate Modeling
for Energy
...and energy-related emissions.

Change in Energy–Related CO₂ Emissions due to Climate and/or CO₂

- Climate Only
- CO₂ + Climate
- CO₂ Only

MtC/yr

Year

2010 2040 2070

0 100 200 300

MtC/yr

0 100 200 300

Climate Only

CO₂ + Climate

CO₂ Only
Preliminary Conclusions

• We find increases in productivity in most parts of the world due to both climate and CO$_2$ fertilization. The productivity increase is larger with CO$_2$ than without.

• These increases lead to a decline in global cropland area; however, some regions to see increases.

• Changes in productivity spill over onto other segments of the economy, resulting in decreased fossil fuel use & emissions and decreased crop prices.
Comparing to Other Analyses
Other Estimates of Yield in an RCP8.5, with and without CO₂ Fertilization

Source: Ren et al. (2016)
Other Estimates of Yield in an RCP8.5, with and without CO₂ Fertilization

AgMIP

- **Maize**
- **Wheat**
- **Rice**
- **Soy**

iESM

- **Corn**
- **OilCrop**

Fig. 4. Relative change (%) in RCP8.5 decadal mean production for GGCM (based on current agricultural lands and irrigation distribution) ensemble median for all GCM combinations with (solid) and without (dashed) CO₂ effects for maize, wheat, rice, and soy; bars show range of all GCM combinations with CO₂ effects. GE_PIC, GAEZ-IMAGE, and LPJ-GUESS only computed one GCM without CO₂ effects.

Source: Rosenzweig et al. (2014)
We are using offline runs to explore the implications of these uncertainties.

Source: Bond-Lamberty et al. (submitted)
Thank you!