Simulations of soil frost and thaw front (FTF) dynamics using a land surface model

Zhenghui Xie, Junqiang Gao, Aiwen Wang
Outline

- Motivation
- A two-directional freeze and thaw algorithm
- A land model including changes in FTFs
- Model validation
- Results and conclusions
Soil freeze/thaw processes including changes of frost/thaw depths significantly influence energy and water exchanges, vegetation growth and organic matter decomposition;

Accurate representation of frost and thaw depths (FFTs) and their feedback is of significance for improving simulations of the hydrological and greenhouse gas exchange processes.
Permafrost and seasonally frozen ground

- **Frozen soil**: all kinds of ice-containing frozen soil at 0°C or below 0°C.

- Permafrost and seasonally frozen soil account for 24% and 30% of the land area in the northern hemisphere, respectively;

- In China, the area of frozen soil is equivalent to 72% of land surface.
Motivation

Current land-surface models such as SSIB, SIB2, SHAW, CoupModel, and CLM include description of permafrost hydrothermal processes. However, these models describe FTF depth as a diagnostic variable, and cannot feedback due to its changes.

In this study, a two-directional freeze and thaw algorithm for simulating FTFs was developed and incorporated into the community land surface model CLM4.5, and then investigate the dynamical changes of soil frost and thaw fronts (FTFs) using the developed model.
Estimation method of FTF Depth

● Direct method

FTF depths can be interpolated from measured or simulated soil temperature (Flerchinger et al., 1989; Frauenfeld et al., 2004; Kennedy et al., 1998), using the 0 ℃ isotherm as the surrogate for the front.

Defects:

1. Multiple FTFs cannot be simulated at the same time when they are in the same soil layer;
2. This isotherm usually exhibits large fluctuations during autumn freezing and spring snowmelt periods when soil temperature hovers around the freezing point. (Yi et al., 2006)
A two-directional freeze and thaw algorithm

\[
z_f = \sqrt{\frac{2\lambda \cdot D}{L \cdot \theta}}
\]

\[
z_f^2 = \frac{2\lambda \cdot D}{L \cdot \theta}
\]

\[
2z_f \cdot \Delta z_f = \frac{2\lambda \cdot \Delta D}{L \cdot \theta}
\]

\[
\Delta D = (L \cdot \theta \cdot \Delta z_f) \cdot (\frac{z_f}{\lambda})
\]

\[
N_1 = (L \cdot \theta_1 \cdot z_1) \cdot (\frac{R_1}{2})
\]

\[
N_2 = (L \cdot \theta_2 \cdot z_2) (R_1 + \frac{R_2}{2})
\]

\[
\ldots
\]

\[
N_i = (L \cdot \theta_i \cdot z_i) (\sum_{n=1}^{i-1} R_n + \frac{R_i}{2})
\]

\[
D - \sum_{n=1}^{i-1} N_n = (L \cdot \theta_i \cdot z_{f0}) (\sum_{n=1}^{i-1} R_n + \frac{z_{f0}}{2\lambda_i})
\]

\[
z_{f0} = -\lambda_i \sum_{n=1}^{i-1} R_n + \left\{ \lambda_i^2 \left[\sum_{n=1}^{i-1} R_n \right]^2 + 2\lambda_i (D - \sum_{n=1}^{i-1} N_n) / (L \cdot \theta_i) \right\}^{1/2}
\]

\[
z_f = z_{i-1} + z_{f0}
\]

- The Stefan equation assume all the heat is used for the freezing or melting of ground ice.
- Soil profile is modelled as a homogeneous medium

- Use the Stefan equation in a multi-layered system

(Woo et al., 2004)
(Gao et al., 2016)
Schematic diagram of FTFs

Time step n=0

freezing phase

\[z_t = 0 \]

\[z_t > 0 \]

S

P

z_f change

z_f change

thawing phase

\[z_f = 0 \]

\[z_f > 0 \]

No change

z_t change

If \(z_f^n > z_t^n \) and \(z_f^{n+1} > z_t^{n+1} \), \(z_f^{n+1} = 0 \) and \(z_t^{n+1} = 0 \)

If \(z_f^n < z_t^n \) and \(z_f^{n+1} > z_t^{n+1} \), \(z_f^{n+1} = 0 \) and \(z_t^{n+1} = 0 \)

n=n+1

Y

N

End
Permafrost and seasonally frozen ground

Seasonally frozen ground

Permafrost

Red part: Soil temperature > 0°C
Blue part: Soil temperature < 0°C
Permafrost and seasonally frozen ground

Seasonally frozen ground

Permafrost

Red line: Thaw front
Blue line: Frost front

Simulation corresponds reasonably with frozen ground condition.
Model coupling (CLM4.5_FTF)

Given initial FTF depths

According to the FTF in the original stratification, update soil hierarchy

Solve heat equation to get temperature $T_{i_{n+1}}$
Solve soil water equation to get soil unfrozen water content $W_{liq_{i_{n+1}}}$

Return initial soil hierarchy and update $T_{i_{n+1}}$

Phase change?

Y

Update soil unfrozen water content $W_{liq_{i_{n+1}}}$
Soil temperature $T_{i_{n+1}}$, soil ice $W_{ice_{i_{n+1}}}$

Update FTF depths $s1_{n+1}, s2_{n+1}$

N

$T_{i_{n+1}} = T1_{i_{n+1}}, W_{i_{n+1}} = W1_{i_{n+1}}$

n=n+1

Y

N<T

End
Model Validation

Forcing data: ITP(1979-2012).
 temporal resolution: 3 hours, spatial resolution: 0.1°x0.1°.

1. Regional simulation
 Simulation region: China.
 Initial FTF depths: 0m.

2. Single Point simulation
 Station: D66 Station in Tibetan Plateau, permafrost
 Hulugou Station in Heihe basin, seasonally frozen soil
Single Point Model Validation

- D66 station FTFs simulation (permafrost)

- Hulugou station FTFs simulation (seasonally frozen soil)
Frozen ground distribution validation

- North of China is underlain by seasonal frozen soil.
- Tibetan Plateau, Tianshan Mountain, Qilian Mountain and northeast of China are underlain by permafrost.

Simulation of frozen ground in China

Distribution of frozen ground in China (Xin Li, et al., 2008)
Permafrost distribution validation

Simulation

IPA observation
Experimental Design

- Study domain: Global simulation
- Resolution: $0.9^\circ \times 1.25^\circ$
- Atmospheric forcing: CRUNCEP (The standard forcing provided with the model, 110-year dataset (1901-2010))
Global Simulation by CLM4.5_FTF

- Frost front depth in Feb (m).
- Frost front depth in Aug (m).
Global Simulation by CLM4.5_FTF

- Active layer depth in permafrost (m).
- Max frost front depth in seasonally frozen soil (m).
Global Simulation by CLM4.5_FTF

- Trend of active layer depth in permafrost (cm/year).
- Trend of max frost front depth in seasonally frozen ground (cm/year).
- Trend of active layer depth in permafrost is positive and trend of maximum freezing depth in seasonally frozen soil region is negative, except the west of Black Sea.
Global Simulation by CLM4.5_FTF

- Trend of ground temperature in the winter (℃/year).
- Trend of 2m air temperature in the winter (℃/year).
Conclusion and Discussions

- In this study, we developed a two-directional freeze and thaw algorithm and incorporated it into a land surface model to simulate the FTFs.

- The new model performed well in site validation and frozen ground distribution in China and in northern hemisphere.

- With the global warming, trend of active layer depth in permafrost is positive and trend of maximum freezing depth in seasonally frozen soil region except the region around the Black Sea and the Caspian Sea.
Thanks for your Attentions!

http://web.lasg.ac.cn/staff/xie/xie.htm