What (on land) does the atmosphere care (most) about?

| Isolating surface property effects on atmospheric responses using an idealized land model. |

Marysa Laguë  
Graduate Student, University of Washington Dept. of Atmospheric Sciences  
mlague@uw.edu

Collaborators: Abigail Swann (UW), Gordon Bonan (NCAR)
Motivation: identify how changes on land drive responses from the atmosphere
In particular, separate the impact of individual surface properties on the total atmospheric response

How does albedo alone impact temperature, or humidity, or cloud cover? (e.g. changing from a broadleaf tree to a needleleaf tree)

How do roughness, or evaporative resistance, or how much water the soil can hold impact the atmosphere?
Changes in the land surface drive responses in the atmosphere

- Δ Land Surface Property
- Δ Surface Energy Fluxes
- Local Atmospheric Response
- Global Atmospheric Response
Which surface properties are dominating the atmospheric response to land cover change?

Independently modify each surface property and test!

Simple Land Model (coupled into CESM)

- Roughness
- Albedo $\alpha$
- Evaporative resistance
- Bucket hydrology
Which surface properties are dominating the atmospheric response to land cover change? Independently modify each surface property and test!

**Simple Land Model** (coupled into CESM)

Prescribed surface properties, e.g.

- Albedo
- Roughness (vegetation height) [m]
- Evaporative resistance [s/m]
- Water bucket capacity [kg/m²]
- Snow masking depth [kg/m²]
- Soil heat capacity
Two big questions:

1. Where is the atmosphere most sensitive to changes in the land?
Two big questions:

1. Where is the atmosphere most sensitive to changes in the land?

   e.g. does a change in roughness over North America have the same effect as a change in roughness over the Sahara Desert?
Two big questions:

1. Where is the atmosphere most sensitive to changes in the land?
   
e.g. does a change in roughness over North America have the same effect as a change in roughness over the Sahara Desert?

2. How large a change in that land property is required to drive a fixed change in the atmosphere at any given location?
Two big questions:

1. Where is the atmosphere most sensitive to changes in the land?

   e.g. does a change in roughness over North America have the same effect as a change in roughness over the Sahara Desert?

2. How large a change in that land property is required to drive a fixed change in the atmosphere at any given location?

   e.g. how big a Δ albedo is needed to warm the local atmosphere by 1K, and does the Δ albedo required vary spatially?
Experiment: individually perturb 3 separate surface properties, and evaluate the atmospheric response
**Experiment**: individually perturb 3 separate surface properties, and evaluate the atmospheric response

<table>
<thead>
<tr>
<th>Property</th>
<th>Low value</th>
<th>Medium value</th>
<th>High value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albedo</td>
<td>0.1 (Forest)</td>
<td>0.2 (Grass)</td>
<td>0.3 (Desert)</td>
</tr>
<tr>
<td>Roughness</td>
<td>0.5 m (short grass / bare ground)</td>
<td>1 m (shrubs)</td>
<td>2 m (trees)</td>
</tr>
<tr>
<td>Evaporative Resistance</td>
<td>30 s/m (well watered crops, daytime)</td>
<td>100 s/m</td>
<td>200 s/m (nighttime, mostly close stomata)</td>
</tr>
</tbody>
</table>
**Experiment**: individually perturb 3 separate surface properties, and evaluate the atmospheric response

<table>
<thead>
<tr>
<th>Property</th>
<th>Low value</th>
<th>Medium value</th>
<th>High value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albedo</td>
<td>0.1 (Forest)</td>
<td>0.2 (Grass)</td>
<td>0.3 (Desert)</td>
</tr>
<tr>
<td>Roughness</td>
<td>0.5 m (short grass / bare ground)</td>
<td>1 m (shrubs)</td>
<td>2 m (trees)</td>
</tr>
<tr>
<td>Evaporative</td>
<td>30 s/m (well watered crops, daytime)</td>
<td>100 s/m</td>
<td>200 s/m (nighttime, mostly close stomata)</td>
</tr>
<tr>
<td>Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only change **one** variable at a time; modify all non-glaciated land points; run coupled to CAM & a slab ocean for 50 years.
Example atmospheric response: 2m air temperature

\[ \Delta 2m \text{ Air Temperature for:} \]

- \( \Delta \text{Albedo (low – high)} \)
- \( \Delta \text{Roughness (low – high)} \)
- \( \Delta \text{Evaporative resistance (low – high)} \)
Example atmospheric response: 2m air temperature

Δ 2m Air Temperature for:

Δ Albedo (low – high)

Δ Roughness (low – high)

Δ Evaporative resistance (low – high)

For each property, actually have 3 simulations (low, medium, & high value)
→ Calculate a slope of $\frac{\partial (\text{atm})}{\partial (\text{land})}$

e.g. $\frac{\partial (T_{2m})}{\partial (\text{albedo})}$

For each property, actually have 3 simulations (low, medium, & high value)
→ Calculate a *slope* of $\frac{\partial \text{(atm)}}{\partial \text{(land)}}$ for some land point:

Like right here.
→ Calculate a slope of $\frac{\partial (T_{2m})}{\partial \text{(albedo)}}$ for some land point:
Calculate a slope of $\frac{\partial (T_{2m})}{\partial (\text{albedo})}$ for some land point:

-1.6 K per 0.1 increase in albedo

$-0.15$ K per 1m increase in roughness

$+0.1$ K per 10 s/m increase in evaporative resistance
We have $\frac{\partial (\text{atm})}{\partial (\text{land})}$ ... take its inverse to get $\frac{\partial (\text{land})}{\partial (\text{atm})}$:
We have $\frac{\partial (\text{atm})}{\partial (\text{land})}$ ... take its inverse to get $\frac{\partial (\text{land})}{\partial (\text{atm})}$:

$$\left( \frac{\partial (\text{atm})}{\partial (\text{land})} \right)^{-1} = \frac{\partial (\text{land})}{\partial (\text{atm})} =$$

How large a change in land property is required to drive a fixed change in the atmosphere (e.g. a 1K increase in 2m air temperature)
We have \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) ... take its inverse to get \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (values in red)
We have $\frac{\partial (\text{atm})}{\partial (\text{land})}$ ... take its inverse to get $\frac{\partial (\text{land})}{\partial (\text{atm})}$ (values in red)

How linear is the relationship?

-0.06 alpha/K

-6.50 m/K

101.37 [s/m]/K
Albedo relationship is always pretty linear; roughness is less so, over many regions.

\[ \text{-0.04 alpha/K} \]

\[ 152.84 \text{ m/K} \]

\[ 94.07 \text{ [s/m]} / \text{K} \]
Sensitivity Analysis:
Do that sort of thing for every point on land, and plot the slope on a map...

\[
\frac{\partial (atm)}{\partial (land)}
\]
Sensitivity Analysis:
Do that sort of thing for every point on land, and plot the slope on a map...

\[ \frac{\partial (\text{land})}{\partial (\text{atm})} \]

\[ \frac{\partial (\text{atm})}{\partial (\text{land})} \]
Sensitivity Analysis:
Do that sort of thing for every point on land, and plot the slope on a map...

$$\frac{\partial \text{ (land) }}{\partial \text{ (atm) }}$$

$$\frac{\partial \text{ (atm) }}{\partial \text{ (land) }}$$

How linear the relationship is
Land response is a combination of local and remote effects (running coupled to CAM). Ocean response is ALL remote (no land changes over the ocean)
Sensitivity Analysis

Sensitivity to Roughness

\[ \frac{\partial \text{atm}}{\partial \text{land}} \]

Red regions: surface air warms with increased roughness
Blue regions: surface air cools with increased roughness
Sensitivity Analysis

Red regions: make surface rougher to warm
Blue regions: make surface smoother to warm

$$\frac{\partial \text{(land)}}{\partial \text{(atm)}}$$
$$\frac{\partial \text{(atm)}}{\partial \text{(land)}}$$
Sensitivity Analysis

Sensitivity to Roughness

\[ \frac{\partial (\text{land})}{\partial (\text{atm})} \]

\[ \frac{\partial (\text{atm})}{\partial (\text{land})} \]

Red regions: make surface rougher to warm
Blue regions: make surface smoother to warm

How linear the relationship is
Sensitivity Analysis

Generally: making land rougher leads to cooler land (more energy goes into turbulent heat fluxes, less into warming the surface).

But, this is **not** the case everywhere!
Warming with *increased* roughness at high latitudes is a **winter** phenomena.

**Seasonal Δ TS [K]**

- **DJF (hc2 - hc0.5)**
- **JJA (hc2 - hc0.5)**
- **Annual Mean (hc2 - hc0.5)**

Sign change in winter

Dominates sign in annual mean
Warming with *increased* roughness at high latitudes is a *winter* phenomena.

Sensible heat fluxes have opposite sign over regions where rougher = warmer.

"Decrease" in sensible heat flux is actually an *increase* in negative (*downwards*) sensible heat flux as the ground gets rougher.
Sensitivity Analysis: Roughness

The air is warmer than the ground over high latitude land regions: sensible heat fluxes go \textit{from} the air \textit{to} the land

\textbf{Sensitivity to Roughness}

\textit{DJF} $\Delta (TS - TREFHT)$ [K]

Blue: air is warmer than surface (sensible heat flux should go \textit{downwards})
Red: surface is warmer than air (sensible heat flux should go \textit{upwards})
Normal conditions (red locations)

Cool air

Warm ground

TS: warmer

SH: lower (and +)

\[ |S_{\text{smooth}}| < |S_{\text{rough}}| , \quad S_{\text{rough}} - S_{\text{smooth}} \text{ looks positive} \]

Shsmooth > 0

Shrough > 0
Normal conditions (red locations)

Cool air

Warm ground

TS: warmer
SH: lower (and +)

$|S_{h_{smooth}}| < |S_{h_{rough}}|$, $S_{h_{rough}} - S_{h_{smooth}}$ looks positive

Cold land (blue locations)

Warm air

Cold ground

TS: warmer
SH: lower (and -)

$|S_{h_{smooth}}| < |S_{h_{rough}}|$, but both are negative... so $S_{h_{rough}} - S_{h_{smooth}}$ looks negative
Cold land (blue locations)

<table>
<thead>
<tr>
<th>Smooth</th>
<th>Rough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm air</td>
<td>Cool air</td>
</tr>
<tr>
<td>Cold ground</td>
<td>Warm ground</td>
</tr>
</tbody>
</table>

\[ \text{Big - Small - } (\text{Sh}_{\text{rough}} - \text{Sh}_{\text{smooth}}) < 0 \]

\[ \text{TS: warmer} \quad \text{SH: lower (and -)} \]

\[ |\text{Sh}_{\text{smooth}}| < |\text{Sh}_{\text{rough}}| , \quad \text{but both are negative... so } \text{Sh}_{\text{rough}} - \text{Sh}_{\text{smooth}} \text{ looks negative} \]
Wintertime reversal of sensible heat fluxes dominates sensitivity of air temperature to roughness at high latitudes

Red regions: make surface rougher to warm
Blue regions: make surface smoother to warm

\[
\frac{\partial (\text{land})}{\partial (\text{atm})}
\]

\[
\frac{\partial (\text{atm})}{\partial (\text{land})}
\]

How linear the relationship is
Over realistic ranges of albedo / roughness / evaporative resistance perturbations, the largest responses by far come from albedo.

Sensitivity to Albedo

\[
\frac{\partial (\text{land})}{\partial (\text{atm})}
\]

Sensitivity to Roughness

\[
\frac{\partial (\text{land})}{\partial (\text{atm})}
\]

Sensitivity to Evaporative Resistance

\[
\frac{\partial (\text{land})}{\partial (\text{atm})}
\]

Note: only looking for a 0.1 K change in temperature for roughness / evaporative resistance! (Weaker forcing)
Summary

- Perturbed 3 variables: albedo, roughness, and evaporative resistance.

- Calculate \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) (how sensitive the atmosphere is to a given increment of land change),

invert to find \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)
Summary

• Perturbed 3 variables: albedo, roughness, and evaporative resistance.
  
  • Calculate $\frac{\partial (\text{atm})}{\partial (\text{land})}$ (how sensitive the atmosphere is to a given increment of land change),
  
  invert to find $\frac{\partial (\text{land})}{\partial (\text{atm})}$ (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)

• Albedo dominates atmospheric response in terms of magnitude
Summary

• Perturbed 3 variables: albedo, roughness, and evaporative resistance.
  
  • Calculate \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) (how sensitive the atmosphere is to a given increment of land change),
  
  invert to find \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)

• Albedo dominates atmospheric response in terms of magnitude

• Evaporative resistance response is quite linear over land, but weaker than albedo or roughness
  (conflating effects of water availability here, though)
Summary

• Perturbed 3 variables: albedo, roughness, and evaporative resistance.
  
  • Calculate \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) (how sensitive the atmosphere is to a given increment of land change),

  invert to find \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)

• Albedo dominates atmospheric response in terms of magnitude

• Evaporative resistance response is quite linear over land, but weaker than albedo or roughness (conflating effects of water availability here, though)

• Non-linear responses to roughness
  • High latitudes behave differently (stable winter conditions)
Summary

• Perturbed 3 variables: albedo, roughness, and evaporative resistance.

• Calculate \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) (how sensitive the atmosphere is to a given increment of land change), invert to find \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)

• Albedo dominates atmospheric response in terms of magnitude

• Evaporative resistance response is quite linear over land, but weaker than albedo or roughness (conflating effects of water availability here, though)

• Non-linear responses to roughness
  • High latitudes behave differently (stable winter conditions)

• Local atmospheric sensitivity is a response both to the local land change forcing and to the remote land changes as well.
Summary

• Perturbed 3 variables: albedo, roughness, and evaporative resistance.

  * Calculate \( \frac{\partial (\text{atm})}{\partial (\text{land})} \) (how sensitive the atmosphere is to a given increment of land change),

  invert to find \( \frac{\partial (\text{land})}{\partial (\text{atm})} \) (how large a change in land is required to drive an increment of atmospheric response, e.g. a 1K warming)

• Albedo dominates atmospheric response in terms of magnitude

• Evaporative resistance response is quite linear over land, but weaker than albedo or roughness (conflating effects of water availability here, though)

• Non-linear responses to roughness
  * High latitudes behave differently (stable winter conditions)

• Local atmospheric sensitivity is a response both to the local land change forcing and to the remote land changes as well.

Questions?
Evaporative resistance is sometimes dominated by the $\beta$ term (how full the bucket is), rather than the “lid” resistance. Most, but not all of these places are dry... (exception: the Amazon)
\[(S_{\text{rough}} - S_{\text{smooth}}) < 0\]
Sensitivity Analysis

Evaporative Resistance

Evaporative Resistance
Temperature response range for physically realistic range of surface perturbations

Δ Surface Temperature [K]
Sensitivity Analysis

Albedo

Roughness

Evaporative Resistance