Climate Engineering Research with WACCM

Jadwiga (Yaga) Richter, Simone Tilmes
Mike Mills, Joe Tribbia, Jean-Francois Lamarque,
Isla Simpson, John Fasullo, Anne Glanville,
Adam Philips, William Large

Ben Kravitz (PNNL) and Doug MacMartin (Caltech)
The Team

Simone Tilmes
Yaga Richter
Ben Kravitz
Doug MacMartin
Mike Mills
Joe Tribbia
Jim Edwards
Isla Simpson
J. F. Lamarque
Bill Large
Francis Vitt
Anne Glanville
John Fasullo
Adam Philips
Earlier Approaches

Demonstrated ability to counteract global mean temperatures

Examine Impacts

Dim Sun, Prescribe Aerosols, or Inject SO₂

Unintended Side Effects / Risks:
- Overcooling in the Tropics
- Warmer temperatures in high latitudes
- Reduced precipitation
- Shifts in rain patterns
- Arctic sea-ice still melting

Kravitz et al. 2016

Climate Engineering Research with WACCM
Our Approach

Goals:
1. Global temperature
2. Equator-to-pole temperature gradient
3. Pole-to-pole temperature gradient

Approach demonstrated with solar dimming in CAM, Kravitz et al. 2016
Whole Atmosphere Community Climate Model, version 5

Atmospheric Chemistry
158 solution species, 117 photolysis reactions, 332 other reactions

Prognostic Aerosols

Mills et al. 2017 (submitted)

Climate Engineering Research with WACCM
System Identification

Single Injection Matrix Experiments

WACCM Control:
• RCP8.5 Scenario

Matrix Simulations:
• Inject in Year 2040
• 10 year simulations
• Constant injection amount every year

Climate Engineering Research with WACCM
System Identification

Tilmes et al. 2017 (revised)

Climate Engineering Research with WACCM
Combined Injections

- Response is nonlinear, but
- Nonlinearities of order 20%; can be managed using feedback

MacMartin et al. 2017 (submitted)

Climate Engineering Research with WACCM
Implementation of Feedback in WACCM

1. Run WACCM for 1 year
2. Run feedback algorithm to determine amount and locations of injection
3. Calculate deviation from objectives
Feedback Simulation with WACCM

Kravitz et al. 2017 (under revision)
Feedback Simulation with WACCM

RCP8.5 (2080-2099) – (2010-2030)

Annual

Feedback

Kravitz et al. 2017 (under revision)
September Arctic Sea-Ice

Recovery of September Arctic Sea-Ice due to cooler Temperatures in high northern latitudes

Kravitz et al. 2017 (under revision)
Geoengineering Large Ensemble

To build confidence and identify regional impacts and side effects

• **RCP8.5 2010-2030** (reference period):
 20 ensemble members

• **RPC8.5 2010-2100**
 3 ensemble members

• **Feedback simulation**: 2020-2100:
 20 ensemble members branching from 20 control experiments in 2020
Geoengineering Large Ensemble

Tilmes et al. 2017 (in preparation)

Climate Engineering Research with WACCM
Key Outcomes

Tilmes et al. 2017 (in preparation)

Climate Engineering Research with WACCM
Stratospheric T Changes

Climate Engineering Research with WACCM
All simulations will be available to community

Help us evaluate risks & side effects!

Questions:
jrichter@ucar.edu
tilmes@ucar.edu
Needed Injections

Tilmes et al. 2017 (in preparation)