CESM Atmosphere Model Working Group Session
Wednesday, 21 June 2017
NCAR – Boulder, Colorado – Center Green Auditorium – Center Bay

Webcast: http://www.fin.ucar.edu/it/mms/cg-center-live.htm

1:30 p.m. Julio Bacmeister – Overview of CAM development for CESM2
1:45 p.m. Cecile Hannay – Where are we with the CESM2 coupled simulations?
2:00 p.m. Colin Zarzycki – Early investigations of climate extremes in variable-resolution CESM2 experiments
2:15 p.m. Alan Rhoades – A variable-resolution CESM case study of the comparative importance of model resolution and microphysics in a mountainous region
2:30 p.m. Guang Zhang – Adding stochasticity to the Zhang-McFarlane scheme in CAM5
2:45 p.m. Xue Zheng – Improving the representation of drizzling MBL clouds in climate models
3:00 p.m. Break
3:30 p.m. I-Kuan Hu – Radiative-convective equilibrium in single column CAM
3:45 p.m. Peter Lauritzen – Revisiting viscosity coefficients and topography in NCAR CAM-SE
4:00 p.m. Shaocheng Xie – The status of the ACME low- and high-resolution atmosphere model development
4:15 p.m. Hui Wan – Compressive sensing shows potential for atmosphere model emulation
4:30 p.m. Discussion
5:00 p.m. Adjourn

Julio Bacmeister, Rich Neale, Peter Caldwell, Christiane Jablonowski, Cecile Hannay, Andrew Gettelman
and many, many others!

AMP/CGD
National Center for Atmospheric Research
Boulder, Colorado
New co-chair

Rich Neale

2010

2017

EXIT
New co-chair

Julio Bacmeister

March 2017

June 2017
Up to #180 from around #125 in March
• Each “experiment” can have multiple cases, e.g. B1850, 20thC, AMIP …
Community Atmosphere Model, version 5 (CAM5)
Other recent changes in CAM not discussed previously

In before March meeting

- CLUBB supersaturation. Current version can leave supersaturation due to process ordering. Cleaning this up via *ad hoc* cloud formation led to large climate sensitivity (6K). We now simply allow supersaturation to occur.
- CAPETEN – ZM stops at **first** level of no-buoyancy (before was 5) ➔ better precipitation simulation mean and variability

Since March meeting

- Dust tuning ➔ significant decrease in clearsky SW 0.1-0.2 Wm$^{-2}$
Improvements in CAM6/CESM2
Skill Score (simulation: #125)

- General monotonic improvement from CESM1 (DJF/ANN)
- Large initial degradation in JJA mostly recovered
- Removing super-saturation -> improved skill, but high climate sensitivity
- Land model strongly impacts JJA score (new land at 118).
Precipitation (Annual) - AMIP

- Greatest success in IO/Monsoon region
- Reduced SPCZ
- Gain Pacific ITCZ bias
- Reduced in CAM6
- Largest improvement
Temperature (Annual) - AMIP

- Lower stratospheric ‘cold-pole’ problems see significant decrease (*Mountain waves?*)
- Polar near-surface, improved stable PBLs
- Tropics go warm, cold, warm, cold, colder, cold
- A response to continued changes to deep convection
Tropical Variability (Precipitation) - CESM

- Largest variation in MJO power
- Increased power and zonal wavenumber extent
Tropical Wave Variability - Precipitation

Madden Julian Oscillation

- Winter (1979-1999)
- Isolate wave wavenumber frequency regions
- Regional variance
- Significant increase in MJO activity
- Coupled much improved over AMIP for CAM6
Model looks pretty good
What happened???

- Dust tuning and land model changes led to significantly colder model. (these changes are not considered optional)
- CMIP6 emissions
• “bad” CMIP6 emissions contribute, but may not be the whole story
161 (1951-1970) – (1851-1870)

OCEAN: CORR= 1.00; DEV=1.01; RMSE= 2.56; BIAS= -0.06
LAND: CORR= 1.00; DEV=1.01; RMSE= 3.52; BIAS= -0.33
GLOBAL: CORR= 1.00; DEV=1.01; RMSE= 2.64; BIAS= -0.31

151 (1951-1970) – (1851-1870)

OCEAN: CORR= 1.00; DEV=1.00; RMSE= 2.48; BIAS= 0.37
LAND: CORR= 1.00; DEV=1.00; RMSE= 3.29; BIAS= -0.67
GLOBAL: CORR= 1.00; DEV=1.00; RMSE= 2.74; BIAS= 0.06

ANN RESTOM

Community Earth System Model

CESM Workshop, Boulder CO

Wednesday, August 2, 2017
What else can we do???

• Patterns of RESTOM change suggestive of AIE

• 2nd aerosol indirect effect (lifetime effect): more droplets ➞ slower autoconversion ➞ thicker longer-lived clouds
 – Poorly constrained. Some obs (e.g. in Hawaiian volcanic plumes) suggest is not very big

• Surgically-remove 2nd AIE by overwriting drop number input to autoconversion subroutine
What else can we do???

- Patterns of RESTOM change suggestive of AIE

- 2nd aerosol indirect effect (lifetime effect): more droplets ➔ slower autoconversion ➔ thicker longer-lived clouds
 - Poorly constrained. Some obs (e.g. in Hawaiian volcanic plumes) suggest is not very big

- Surgically-remove 2nd AIE by overwriting number input to autoconversion subroutine
PDFs of instantaneous droplet # density
(accumulated every 25hrs over 3 months)

- Droplet number density going into autoconversion subroutine “pre-processor” is overwritten with a constant number density of n=15 cm\(^{-3}\)
- Does not impact any other aspect of simulation e.g. radiation ...

Might be “tiny” clouds – under investigation
<table>
<thead>
<tr>
<th>New Land ‘Older’ Land</th>
<th>Run (all 2000-1850 emis)</th>
<th>dAOD</th>
<th>dSRF</th>
<th>dTOA</th>
<th>dSWClr</th>
<th>dSWCF</th>
<th>dLWCF</th>
<th>dLWP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CMIP5 (125)</td>
<td>+0.014</td>
<td>-1.20</td>
<td>-1.22</td>
<td>-0.3</td>
<td>-1.5</td>
<td>+0.4</td>
<td>8.1%</td>
</tr>
<tr>
<td>B</td>
<td>CMIP6orig</td>
<td>+0.013</td>
<td>-1.59</td>
<td>-1.60</td>
<td>-0.2</td>
<td>-1.8</td>
<td>+0.4</td>
<td>9.8%</td>
</tr>
<tr>
<td>C</td>
<td>CMIP6 (mod)</td>
<td>+0.019</td>
<td>-1.42</td>
<td>-1.42</td>
<td>-0.2</td>
<td>-1.9</td>
<td>+0.6</td>
<td>8.4%</td>
</tr>
<tr>
<td>D</td>
<td>CAM157 PD-PI (C6mod)</td>
<td>+0.012</td>
<td>-1.69</td>
<td>-1.70</td>
<td>-0.22</td>
<td>-2.1</td>
<td>+0.5</td>
<td>10.9%</td>
</tr>
<tr>
<td>E</td>
<td>CAM157 PD-PI (C5)</td>
<td>+0.014</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-0.17</td>
<td>-1.6</td>
<td>+0.1</td>
<td>8.8%</td>
</tr>
<tr>
<td>F</td>
<td>CAM157 PD-PI (C6fin)</td>
<td>+0.014</td>
<td>-1.40</td>
<td>-1.36</td>
<td>-0.28</td>
<td>-1.7</td>
<td>+0.5</td>
<td>9.0%</td>
</tr>
<tr>
<td>G</td>
<td>CAM169 PD-PI (C6fin)</td>
<td>+0.012</td>
<td>-0.93</td>
<td>-0.92</td>
<td>-0.14</td>
<td>-1.1</td>
<td>+0.3</td>
<td>1.2%</td>
</tr>
<tr>
<td>H</td>
<td>CAM169+ PD-PI (C6fin)</td>
<td>+0.010</td>
<td>-0.70</td>
<td>-0.79</td>
<td>-0.09</td>
<td>-1.2</td>
<td>+0.4</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Emissions: C5 = CMIP5, C6orig = default vertical, C6mod = 157, lower SO2, C6fin = 161+ (POM fix, all anthro SO2 lower). Note: Not the new CMIP6
Immediate plan

- Re-running simulations with “good” CMIP6 emissions
 - Reasons for optimism: corrected aerosol on sea-ice albedo, land albedos ...

- Prepared to run with fixed N_{drop} autoconversion
 - Retuning required
Immediate plan

• Re-running simulations with “good” CMIP6 emissions
 – Reasons for optimism: corrected aerosol on sea-ice albedo, land albedos …

• Prepared to run with fixed N_{drop} autoconversion
 – Retuning required

Breaking News:
NCAR’s CMIP6 timetable has been put on hold.
Understanding AIE is top priority
Accretion? Cloud macrophysics/subgrid variability?
• Despite preceding discussion CAM physics have been nearly unchanged since last fall
Plans for Release

- CESM2.0 (August?)
 - FV-latlon (1°) Scientifically supported B1850, BHIST, F2000, FHIST compsets
 - CAM-SE codebase onto trunk
 - **New CIME-based SCAM.** Full CESM-column.
 - Limited forcing datasets
 - Still uses Eul dycore vertical advection
 - Needs resources
 - Simple models (had their own session)

- CESM2.x (August+N months)
 - Compsets for CAM-SE (ne120 and ne30) CONUS-grid?
• **SE**
 – Code on trunk soon (week[s])
 – Science compsets/forcing data in development
 – Dry-mass vertical coordinate

• **MPAS**
 – Work ongoing to integrate MPAS into CESM so that it can be supported in CESM
 – Evaluation of climate is on-going

• **FV3**
 – Integration into CESM has begun
• Time to think about new physics. NOW is the time to contribute
 – e.g. Guang Zhang – *new* stochastic ZM convection
 – Forecast based techniques for evaluation?? Refined grids

• Resolution: *vertical* as well as horizontal. Raise model top?

• Remaining biases
 – US midwest warm bias –missing MCSs
 – Double-ITCZ
 – Southern ocean wind stress

• More attention to interactions with other components
Will there be a CMIP7?
More emphasis on sub-seasonal, seasonal decadal forecasting?
Questions?
Community Atmosphere Model, version 6 (CAM6)
CESM2 Simple Models

“Out-of-the-box” support for:

- Aquaplanet configurations (Medeiros et al., 2016; …)
- Idealized moist baroclinic wave (Ullrich et al., 2014)
- Held-Suarez forcing (Held and Suarez, 1994)
- Kessler Microphysics (Kessler, 1969)
- Toy terminator chemistry (Lauritzen et al., 2015)
- Moist Held-Suarez (Reed and Jablonowski, 2012; …)

New version of SE

- Dry mass vertical coordinate
- Condensate loading
- “Correct” moist energy
- Optional CSLAM transport
- Separate physics grid (CSLAM grid, coarser or finer finite-volume grid in each element)
- Massive code cleanup
Regional Grid Refinement: US

High Resolution precipitation field. Variable resolution grid (0.25° fine mesh)
Low intensity in low resolution region, higher intensity in high resolution region
Variable resolution grid (1°>0.5°>0.25° fine mesh)
20-day hindcasts: Day-1 hindcast below (9 Jan, 2010)
Question: Which region is the most for the MJO
Ridge orientation determines wave orientation and direction of drag force not low-level wind.

Ridge height estimate is based on min and max elevations of mean ridge profile not based on subgrid variance.

Parameterization allows flow around obstacles – *form drag* - as well as “downslope wind” high-drag dynamics (e.g. Scinocca&McFarlane 2000).
PBL Form Drag (from smooth small obstacles)

TMS:

\[F_x = C_D |U| U(z_{LM}), \quad C_D = \kappa \left(\ln \left(\frac{z_{LM}}{z_0} \right) \right)^{-2}, \quad z_0 \propto \sqrt{\langle h'^2 \rangle} \]

- Logarithmic in \(h'_\delta \). Only applied in lowest model layer.

Beljaars et al. (2004):

\[F_x = -\alpha \beta C_{md} C_{corr} |\vec{U}(z)| \vec{U}(z) 2.109 e^{-(z/1500)1.5} a_2 z^{-1.2}, \quad a_2 \propto \langle h'^2 \rangle \]

- Proportional to \(h'^2 \). Applied over physically based vertical profile.

\(h'_\delta \) are topographic perturbations with scales below 3km derived from GMTED data, <> represents averaging to model grid.

"Greenland mods" to fix precipitation.
US Precipitation: Summer

May Precipitation Climatology

June Precipitation Climatology

July Precipitation Climatology

NOAA-CPC

CESM1 (LENS)

CESM2

Too Wet

Too Dry

Comm...
US Precipitation: Winter

January Precipitation Climatology

February Precipitation Climatology

March Precipitation Climatology
• Skill scores
• Surface stress + Greenland mods
• SB2001
• Super-saturation (past plots?)
• CLUBB tunings (gamma coeff, ck_10, C_14 and PS/PRECT plots)
• Ck_10 higher 0.5->1.0 in stable PBLs
• CLUBB MG2 subcycling
• Restriction of CLUBB in the vertical
• No angular momentum conservation fixes
• Ocean coupling frequency (24 -> 2 -> 1hrly)
• Sea-salt emission?
• Estuary model
• New solar file
• Capeten/MJO plots
• Background volcanoes
• Oxidation ozone files
• Tropopause definitions
• ENSO plots
• Simple models

• SLD core removal
• New topography
• Climate sensitivity SOM plots
• Lifetime effect changes?
• 20th plots
• Will be using new CMIP6 emissions
• Low resolution
• High resolution
• Regional refinement
• Merging of NCAR modeling?
20th Century

Surface sensible heat flux (SHFLX) norm: 1961-1990 - Smoothed

Global

Flux anomaly (W/m²)

Year

1860 1890 1920 1950 1980

0.8 0.4 0.0

-0.4 -0.8

CESM1 (LENS)

CESM2 (125)

HADCRU

N. Hem.

Flux anomaly (W/m²)

Year

1860 1890 1920 1950 1980

0.8 0.4 0.0

-0.4 -0.8

S. Hem

Flux anomaly (W/m²)

Year

1860 1890 1920 1950 1980

0.8 0.4 0.0

-0.4 -0.8
20th Century

Surface latent heat flux (LHFLX) norm: 1961-1990 - Smoothed

Global

- CESM1 (LENS)
- CESM2 (125)
- HADCRU

N. Hem.

S. Hem

Community Earth System Model
CESM Workshop, Boulder CO
Wednesday, August 2, 2017
ENSO in CESM2

CESM2

Obs.

CESM1 (LENS)
Madden Julian Oscillation (MJO)

- Lag correlation with Indian-Ocean precip
- 20-100 day band pass filter, 10S-10N
- 9 years, DJFMAM
Atmospheric High Pressure Blocking

- Daily 500-mb height in the northern hemisphere mid-latitudes
- Reversal in gradient
- Lies mostly within LENS ensemble spread
- DJF W. Europe and MAM Greenland increases/improvements
Climate Sensitivity: 2xCO2/Gregory

- Climate sensitivity
- CESM1: 3.9K
- CESM2: 4.2K
- Significant sensitivities
- Remove liquid supersaturation: High
- With in-cloud variances used in CLUJB calculations: High
20th Century

Surface temperature (radiative) (TS) norm: 1961-1990

Global

N. Hem.

S. Hem

TS anomaly (K)

Year

 CESM1 (LENS)
 CESM2 (125)
 HADCRU

Community Earth System Model

CESM Workshop, Boulder CO

Wednesday, August 2, 2017
20th Century

Surface temperature (radiative) (TS) norm: 1961-1990 - Smoothed

Global

Year
TS anomaly (K)
-0.60
-0.30
0.00
0.30
0.60
1860 1890 1920 1950 1980

CESM1 (LENS)
CESM2 (125)
HADCRU

N. Hem.

Year
TS anomaly (K)
-0.60
-0.30
0.00
0.30
0.60
1860 1890 1920 1950 1980

S. Hem

Year
TS anomaly (K)
-0.60
-0.30
0.00
0.30
0.60
1860 1890 1920 1950 1980
Longwave cloud forcing (LWCF) norm: 1961-1990 - Smoothed

Global

Flux anomaly (W/m²)

Year

CESM1 (LENS)
CESM2 (125)
HADCRU

N. Hem.

S. Hem

Flux anomaly (W/m²)

Year
Autoconversion Changes - > Seifert and Beheng (2001)

CAM5.4

SWCF: Subtropics and Middle Latitudes: Shallow convection Regime
Arctic effects decrease

CAM5.5

CAM6-125