Solar forcing for CMIP6

Daniel R. Marsh
National Center for Atmospheric Research, Boulder, Colorado, USA

Gabriel Chiodo
Columbia University, New York, New York, USA
Outline

• Part 1: Partial review of Matthes et al. 2016 GMD paper detailing CMIP6 recommendations

• Part 2: Progress in testing new forcing in WACCM
Part 1: Matthes et al. (2016)

- GMD paper published 6/6/2016 describes the recommendation for radiation and particle forcing.

- Radiation: total solar irradiance (TSI) and solar spectral irradiance (SSI), and F10.7cm radio flux,

- Particle forcing (new!): geomagnetic indices Ap and Kp, and ionization rates from solar protons, electrons and galactic cosmic rays.

- Data available at http://solarisheppa.geomar.de/cmip6

CESM Workshop, Breckenridge, June 20-23, 2016
Irradiance forcing

- Fixed and variable PI control
- Daily and monthly historical (1850–2014)
- Future (2015–2300), with an additional extreme Maunder Minimum-like sensitivity scenario
- TSI and SSI time series are defined as averages of two (semi-) empirical solar irradiance models: NRLTSI2/NRLSSI2 and SATIRE-TS
TSI historical

Matthes et al., GMD, 2016

weaker secular trend

Stronger change in recent minima

CESM Workshop, Breckenridge, June 20-23, 2016
Solar cycle amplitude

Matthes et al., GMD, 2016
Particle forcing

- geomagnetic indices Ap and Kp (used in WACCM for thermospheric processes, upper boundary)

- ion pair production rates (IPR) from solar protons, energetic electrons and galactic cosmic rays (used in WACCM and CAM-CHEM for NOx and HOx production)

- IPR on geomagnetic latitude and height
Geomagnetic forcing

Matthes et al., GMD, 2016
Past and future projections for particle forcing

![Graphs showing past and future projections for particle forcing](image_url)
Geomagnetic field variations

• 1850–1900: gufm1 model (Jackson et al., 2000)

• 1900–2015: International Geomagnetic Reference Field (IGRF-12; Thébault, 2015)

Part 2: Testing new forcing in WACCM

- CESM1(WACCM) version 1.0
 - Same model as used in CMIP5 (1.9° x 2.5°)
 - Interactive land / ocean / sea ice
 - Year 2000 fixed greenhouse gas concentrations
- 22-year integration using 1960-2005 average SSI (no solar cycle)
- 2 sets of integrations
 - NRLSSI v1: **CMIP5-SSI**
 - SOLARIS (NRLSSI v2 + SATIRE)/2: **CMIP6-SSI**
- Here the focus is on analysis of annual means (taken over the whole integration)
Change in SSI relative to 11-yr cycle

CESM Workshop, Breckenridge, June 20-23, 2016
Change in SSI relative to 11-yr cycle

~1 W/m2 decrease in the stratosphere

~1 W/m2 increase in the troposphere

Figure credit: S. Solomon
Comparison with solar-cycle

Hood et al., QJRMS 2015

CESM Workshop, Breckenridge, June 20-23, 2016
Ozone difference (CMIP6 – CMIP5)/CMIP5

Data Min = -4.3, Max = 1.8

CESM Workshop, Breckenridge, June 20-23, 2016
Hood et al., QJRMS 2015

CESM Workshop, Breckenridge, June 20-23, 2016
Solar Forcing for CMIP6 (v3.1)

1GeOMR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
2Christian-Albrechts Universität zu Kiel, Kiel, Germany
3Institute of Astrophysics of Andalucía (CSIC), Granada, Spain
4University of Reading, Reading, United Kingdom
5EAWAG, Dübendorf, Switzerland
6University of Montreal, Canada
7British Antarctic Survey (NERC), Cambridge, UK
8PC2E, CNRS and University of Orléans, France
9Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, Davos, Switzerland
10Emiliani, NASA Goddard Space Flight Center, Greenbelt, MD, USA
11Freie Universität Berlin, Berlin, Germany
12University of Leeds, Leeds, UK
13Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
14Department of Physics, University of Otago, Dunedin, New Zealand
15Viet Office Hadley Centre, Fitz Roy Road, Exeter, Devon, UK
16Karlruhe Institute of Technology, Karlsruhe, Germany
17ReSolve Centre of Excellence and Sodankylä Geophysical Observatory, University of Oulu, Finland
18Finnish Meteorological Institute, Helsinki, Finland
19National Center for Atmospheric Research, Boulder, CO, USA

Received: 15 Apr 2016 – Accepted: 03 Jun 2016 – Published: 06 Jun 2016

In GMD special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization

CESM Workshop, Breckenridge, June 20-23, 2016
Thanks for your attention. Questions?
Appendix F: Projection of Historical Solar Cycles in Future Scenarios

Table 4. Historical solar cycles used for construction of future cycles (starting on 2015-01-01).

<table>
<thead>
<tr>
<th>Current cycle nb.</th>
<th>Historic cycle nb.</th>
<th>Start current cycle yyyy-mm-dd</th>
<th>Start hist. cycle yyyy-mm-dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>12</td>
<td>2015-01-01</td>
<td>1883-02-01</td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>2020-02-02</td>
<td>1890-01-28</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>2031-12-18</td>
<td>1901-12-14</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>2043-06-19</td>
<td>1913-06-15</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>2053-09-10</td>
<td>1878-12-13</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>2064-10-26</td>
<td>1890-01-28</td>
</tr>
<tr>
<td>30</td>
<td>14</td>
<td>2076-09-10</td>
<td>1901-12-14</td>
</tr>
<tr>
<td>31</td>
<td>15</td>
<td>2088-03-12</td>
<td>1913-06-15</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>2098-06-04</td>
<td>1923-09-07</td>
</tr>
<tr>
<td>33</td>
<td>17</td>
<td>2108-07-05</td>
<td>1933-10-07</td>
</tr>
<tr>
<td>34</td>
<td>18</td>
<td>2118-11-21</td>
<td>1944-02-23</td>
</tr>
<tr>
<td>35</td>
<td>19</td>
<td>2129-01-16</td>
<td>1954-04-20</td>
</tr>
<tr>
<td>36</td>
<td>20</td>
<td>2139-07-02</td>
<td>1964-10-03</td>
</tr>
<tr>
<td>37</td>
<td>21</td>
<td>2150-12-04</td>
<td>1976-03-07</td>
</tr>
<tr>
<td>38</td>
<td>22</td>
<td>2161-04-21</td>
<td>1986-07-24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current cycle nb.</th>
<th>Historic cycle nb.</th>
<th>Start current cycle yyyy-mm-dd</th>
<th>Start hist. cycle yyyy-mm-dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>23</td>
<td>2171-05-21</td>
<td>1996-08-22</td>
</tr>
<tr>
<td>40</td>
<td>24</td>
<td>2183-08-19</td>
<td>2008-11-20</td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>2194-10-31</td>
<td>1890-01-28</td>
</tr>
<tr>
<td>42</td>
<td>14</td>
<td>2206-09-16</td>
<td>1901-12-14</td>
</tr>
<tr>
<td>43</td>
<td>15</td>
<td>2218-03-18</td>
<td>1913-06-15</td>
</tr>
<tr>
<td>44</td>
<td>12</td>
<td>2228-06-09</td>
<td>1878-12-13</td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>2239-07-26</td>
<td>1890-01-28</td>
</tr>
<tr>
<td>46</td>
<td>14</td>
<td>2251-06-10</td>
<td>1901-12-14</td>
</tr>
<tr>
<td>47</td>
<td>15</td>
<td>2262-12-10</td>
<td>1913-06-15</td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>2273-03-03</td>
<td>1923-09-07</td>
</tr>
<tr>
<td>49</td>
<td>17</td>
<td>2283-04-03</td>
<td>1933-10-07</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>2293-08-19</td>
<td>1944-02-23</td>
</tr>
</tbody>
</table>
HOx={H, OH, HO2} difference (CMIP6 – CMIP5)/CMIP5

6th International HEPPA-SOLARIS Meeting, 13-17 June 2016, Helsinki, Finland
Summary

<table>
<thead>
<tr>
<th>TSI</th>
<th>W/m²</th>
<th>SW heating</th>
<th>T</th>
<th>P(Ox) = JO₂</th>
<th>O₃</th>
<th>P(O¹D) = JO₃</th>
<th>HOx</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI</td>
<td>-0.15</td>
<td>TBD!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><200</td>
<td>+0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-300</td>
<td>-0.5</td>
<td>-0.3 K/d</td>
<td>-1.7 K @ 50 km</td>
<td>-4% @ 50 km</td>
<td>+1.5% @ 50 km</td>
<td>-4% > 40 km</td>
<td>-2% 40 km</td>
<td>~-10% 80 km</td>
</tr>
<tr>
<td>300-350</td>
<td>-0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>350</td>
<td>+1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6th International HEPPA-SOLARIS Meeting, 13-17 June 2016, Helsinki, Finland