Update on CLM5 progress

David Lawrence and the Land Model Working Group
What’s New for CLM5

A LOT!

More than 50 scientists and software engineers from 15 different institutions involved in development of CLM5
Hydrology: dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW and canopy interc

Snow: canopy snow updates, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.

Rivers: MOSART(hillslope → tributary → main channel)

Nitrogen: flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)

Carbon: revisions to carbon allocation and decomposition

Fire: updates, trace gas and aerosol emissions

Vegetation: plant hydraulics, deep tropical tree rooting, Ecosystem Demography (FATES), prognostic roots, ozone damage

Crops: global crop model with transient irrig. and fertilization (8 crop types), grain prod. pool

Land cover/use: dynamic landunits, revised PFT-distribution, wood harvest by mass, shifting cultivation

Isotopes: carbon and water isotope enabled

CLM5 default configuration

CLM5 optional feature

Included in CESM1.5 (79)

Included by July 1
What's New for CLM5

Hydrology: dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW and canopy interc

Snow: canopy snow updates, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.

Rivers: MOSART(hillslope → tributary → main channel)

Nitrogen: flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)

Carbon: revisions to carbon allocation and decomposition

Fire: updates, trace gas and aerosol emissions

Vegetation: plant hydraulics, deep tropical tree rooting, Ecosystem Demography (FATES), prognostic roots, ozone damage

Crops: crop model with transient irrig. and fert. (8 crop types), grain prod. pool

Land cover/use: dynamic landunits, revised PFT-distribution, wood harvest by mass, shifting cultivation

Isotopes: carbon and water isotope enabled

CLM5 default configuration
CLM5 optional feature
Included in CESM1.5 (79)
Included by July 1
Timeline

CLM5 fixing + tuning
- Feb 2016

CLM5 final configuration
- Mar. 1 2016
- June 2016

CLM5 documentation and control simulations
- Sep. 1 2016
- Dec 2016
- JAMES overview paper incl Tech Note additional papers on N-cycle, land use, hydrology, ‘ILAMB in model dev’, ???
- CLM5 fixing + tuning
- CLM5 final configuration
- Code Freeze
- CESM2.0 Release

WG meetings
- All WGs define -final additions -timeline

CESM2.0 Sessions at Breckenridge
- Definition of CESM2.0

Code available through developers’ access

Document impacts in coupled simulations

CESM2.0 Release
- Full release -All functionality
- -CMIP6 1º CESM2 and CLM5 control simulations
Plant Hydraulic Stress

- Simple model to resolve water transport through the Soil Plant Atmosphere Continuum
- Water supply modeled via simple hydraulic framework
- Loss relative to unstressed transpiration modeled based on leaf-level water potential
- Water stress function used to calculate conductance, photosynthesis, and respiration

Slide courtesy Daniel Kennedy
Small improvements in many areas
~8% reduction in GPP RMSE in CLM5SP
To do list: Scientific development
Update surface dataset tool to ingest CMIP6 land use dataset.

New History
- Hyde 3.2 based
- Landsat F/NF
- Multiple crop types (5)
- Multiple pasture types (2)
- Updated Forest Cover/B
- Updated Wood harvest
- Updated Shifting Cultivation
- Extended time domain (850-2015)

New Mgt. Layers

Agriculture
- Fraction of cropland irrigated
- Fraction of cropland flooded
- Fraction of cropland fertilized
- Fertilizer application rates
- Fraction of cropland tilled
- Fraction of cropland for biofuels

Crop rotations

Wood Harvest
- Fraction used for industrial products
- Fraction used for commercial biofuels
- Fraction used for fuelwood

New Future Scenarios
- Six futures, SSP-based

New Resolution
- 0.25°

New Transition Matrix

<table>
<thead>
<tr>
<th></th>
<th>Pri F</th>
<th>Pri NF</th>
<th>Sec F</th>
<th>Sec NF</th>
<th>C3 Ann</th>
<th>C4 Ann</th>
<th>C3 per</th>
<th>C4 per</th>
<th>C3 N-Fix</th>
<th>Pasture</th>
<th>Rangeland</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pri F</td>
<td></td>
</tr>
<tr>
<td>Pri NF</td>
<td></td>
</tr>
<tr>
<td>Sec F</td>
<td></td>
</tr>
<tr>
<td>Sec NF</td>
<td></td>
</tr>
<tr>
<td>C3 Ann</td>
<td></td>
</tr>
<tr>
<td>C4 Ann</td>
<td></td>
</tr>
<tr>
<td>C3 per</td>
<td></td>
</tr>
<tr>
<td>C4 per</td>
<td></td>
</tr>
<tr>
<td>C3 N-Fix</td>
<td></td>
</tr>
<tr>
<td>Pasture</td>
<td></td>
</tr>
<tr>
<td>Rangeland</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
</tr>
</tbody>
</table>

~ 50x information content of CMIP5!
Using tower simulation analysis to understand and optimize parameterization for drought response
2nd CLM Tutorial scheduled for September 12-16, 2016

- **Lectures** on underlying model physics, hydrology, biogeochemistry, ecology, etc
- **Practical sessions** about how to run, modify, and analyze CLM simulations
- Will present science and software of **CLM5 / CESM2**
- More than **85** applicants, 46 accepted plus 8-10 auditors
- Tutorial will (likely) be webcast
- All tutorial material including lectures and practical sessions will be available through a CLM tutorial website
International LAAnd Model Benchmarking (ILAMB) project scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, +

- Green: model performs better than average model
- Red: model performs worse than average model

- 2nd International ILAMB meeting in May
- New variables: runoff, runoff ratio, evap fraction, updated biomass
- New diagnostics
- ILAMBv2 operational
- Tutorial on Wednesday at 5:30 in Aspen / Blue Spruce room
Beyond CLM5

• FATES
• Multilayer canopy
• Hillslope hydrology
• …

Can we move beyond “Shantytown” syndrome?

… and the proliferation of models?

… and continue efforts to modularize and modernize the code and support tools?
A unified land model framework
for research and prediction in climate, weather, and water

Conceptual basis
• Modelers agree on many aspects of terrestrial system science
• Differences among models relate to
 - Flux parameterizations
 - Spatial discretization
 - Numerical solution

Modeling Framework
• Existing models (CLM, Noah-MP, WRF-Hydro, etc.) as special configurations
• Flexibility in
 - Process representation
 - Spatial architecture
 - Numerical solvers

Unify land models across climate, weather and water
• Multiple configurations
• Easy to modify/use
• Centralized support
Development targets for CLM5

• Land cover and land use change
 Global / transient crop capability with irrigation, fertilization, and cultivation of crops (land management) as default for historical and projection runs
 More realistic land cover change impact on water and energy fluxes

• Carbon and nutrient cycles
 Improved 20thC land carbon stocks and carbon stock trends
 Address ecological stones thrown at CLM4 (plants don’t get N for free, leaf N isn’t static, photosynthetic capacity should respond to environment, stomatal conductance not linked to N-limitation)

• Hydrology
 Hydrology representation closer to state-of-art hydrology understanding
 Increase utility for use in water resource and water-carbon interaction research

• Land-atmosphere chemistry coupling
 Enhanced interactions, fire emissions, ozone damage to plants, CH₄ emissions

• Ecosystem Demography model – future biogeochemical core of CLM
 Functional CLM5(ED) for use in studies of biome boundaries, trait filtering, etc
 CESM2 coupled runs with CLM(ED) within CMIP6 timeframe; will not be CESM2 default configuration
Improvements to fresh snow density and snow compaction

- Improved snow densities
- Cooler soil temperatures
- Eliminates spurious Antarctica snow melt
Community Nitrogen Cycle Project
Bug fixes and parameter adjustments

CLM5 (May version) – CLM5 (Feb version)

Leaf Area Index

Albedo (MAM)
Plants pay for fixed & active Nitrogen uptake (in Carbon)

Leaf Nitrogen content varies with the cost of N uptake

Contributions from 4 different institutions

Stomatal Conductance is based on N-limited photosynthesis

Photosynthetic Capacity is optimized wrt environmental drivers

CLM5.0

C FOR NUPTAKE

N UPTAKE

C UPTAKE (NPP)

VARIABLE LEAF C:N

OPTIMIZED Vc,max

NEW MOVING PARTS

C FOR NUPTAKE
To do list: Software development

- Integrate “loose-end” projects
 - Carbon / nitrogen conservation for dynamic landunits
 - Plant hydraulics
 - Dynamic roots
 - Water isotopes (BeTR)
 - Winter wheat
 - Crop tilling
 - Dynamic local river flood stage
 - Permafrost excess ice
 - Switch for PFTs on own column
 - Prescribed soil moisture code
 -

- Code cleanup
 - Rapid code integration for science has lead to accumulation of lots of “Technical Debt”

- Performance
 - CLM5BGC-crop costs ~5-10x over CLM4CN

- Model output rationalization
 - Over 550 fields archived by default
Tropical grid [6.13°N, 288.75°E]

20 year annual mean

	SW↓	SW↑	LW↓	LW↑	H	λE	G	SW↓	SW↑	LW↓	LW↑	H	λE	G	
CTRL	207.3	30.7	429.2	468.4	26.2	96.5	14.7								
PFT-COL	207.3	30.7	429.2	470.8	31.7	103.3	-0.04								

<table>
<thead>
<tr>
<th></th>
<th>SW↓</th>
<th>SW↑</th>
<th>LW↓</th>
<th>LW↑</th>
<th>H</th>
<th>λE</th>
<th>G</th>
<th>SW↓</th>
<th>SW↑</th>
<th>LW↓</th>
<th>LW↑</th>
<th>H</th>
<th>λE</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>2.4</td>
<td>5.5</td>
<td>6.8</td>
<td>14.74</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>3.7</td>
<td>16</td>
<td>12.1</td>
<td>31.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[Wm⁻²]</th>
<th>[Wm⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SW↓</td>
<td>SW↑</td>
</tr>
<tr>
<td>CTRL</td>
<td>207.3</td>
<td>30.7</td>
</tr>
<tr>
<td>PFT-COL</td>
<td>207.3</td>
<td>30.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[Wm⁻²]</th>
<th>[Wm⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SW↓</td>
<td>SW↑</td>
</tr>
<tr>
<td>DIFF</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>