A new measure of predictability and preliminary results from CESM large ensemble data

Vineel Yettella, Jeffrey B. Weiss, Jennifer E. Kay
Department of Atmospheric and Oceanic Sciences
University of Colorado at Boulder
Outline

- Predictability: two kinds
- Prognostic Potential Predictability PPP
- Desirable properties of predictability measures
- Our multidimensional predictability measure
- Our measure applied to a simple case
- Summary
Outline

- Predictability: two kinds
- Prognostic Potential Predictability PPP
- Desirable properties of predictability measures
- Our multidimensional predictability measure
- Our measure applied to a simple case
- Summary
Outline

- Predictability: two kinds
- Prognostic Potential Predictability PPP
- Desirable properties of predictability measures
- Our multidimensional predictability measure
- Our measure applied to a simple case
- Summary
Outline

- Predictability: two kinds
- Prognostic Potential Predictability PPP
- Desirable properties of predictability measures
- Our multidimensional predictability measure
- Our measure applied to a simple case
- Summary
Outline

- Predictability: two kinds
- Prognostic Potential Predictability PPP
- Desirable properties of predictability measures
- Our multidimensional predictability measure
- Our measure applied to a simple case
- Summary
Predictability: first and second kinds
(Lorenz, 1975)

First Kind
Compare $P_e(t)$ to $P_e(t)$
Refers to “initial-value predictability”

Second Kind
Compare $P_c(t)$ to $P_c(0)$
Arises from predictable changes in the external forcing.
“Forced predictability”

(Figure adapted from Branstator and Teng, 2010)
Prognostic Potential Predictability PPP

(Pohlmann et al. 2004)

\[
PPP_x(t) = 1 - \frac{\sigma_{x,ens}^2(t)}{\sigma_{x,clim}^2(day(t))}
\]

- \(PPP_x(t) = 1 \) when \(\sigma_{x,ens}^2(t) = 0 \)
- \(PPP_x(t) \to 0 \) as \(\sigma_{x,ens}^2(t) \to \sigma_{x,clim}^2(day(t)) \)

(Figure adapted from Branstator and Teng, 2010)
Desirable properties of a multidimensional predictability measure P

- P should be a non-dimensional scalar quantity
- P should be zero when the ensemble variance equals the climatological variance
- P should be one when the ensemble variance is zero
- P should reduce to PPP in the one-dimensional case
- P should naturally divide into “predictability components” when the system is partitioned into subsystems
Desirable properties of a multidimensional predictability measure P

- P should be a non-dimensional scalar quantity
- P should be zero when the ensemble variance equals the climatological variance
- P should be one when the ensemble variance is zero
- P should reduce to PPP in the one-dimensional case
- P should naturally divide into “predictability components” when the system is partitioned into subsystems
Desirable properties of a multidimensional predictability measure P

- P should be a non-dimensional scalar quantity.
- P should be zero when the ensemble variance equals the climatological variance.
- P should be one when the ensemble variance is zero.
- P should reduce to PPP in the one-dimensional case.
- P should naturally divide into “predictability components” when the system is partitioned into subsystems.
Desirable properties of a multidimensional predictability measure P

- P should be a non-dimensional scalar quantity
- P should be zero when the ensemble variance equals the climatological variance
- P should be one when the ensemble variance is zero
- P should reduce to PPP in the one-dimensional case
- P should naturally divide into “predictability components” when the system is partitioned into subsystems
Desirable properties of a multidimensional predictability measure P

- P should be a non-dimensional scalar quantity.
- P should be zero when the ensemble variance equals the climatological variance.
- P should be one when the ensemble variance is zero.
- P should reduce to PPP in the one-dimensional case.
- P should naturally divide into “predictability components” when the system is partitioned into subsystems.
Multidimensional Predictability measure

- Adapted from Delsole and Tippett, 2009
- Based on global average temperature T_g
 - Could use other variables
- Partition T_g into temperatures of subsystems
 - Land, Ocean
 e.g. $T_g = f_{\text{Land}}T_{\text{Land}} + f_{\text{Ocean}}T_{\text{Ocean}}$
 - Nino and non-Nino regions, Latitude bands etc.
- In general, $T_g = \vec{f} \cdot \vec{T}$
 e.g. $\vec{f} = (f_{\text{Land}}, f_{\text{Ocean}})$; $\vec{T} = (T_{\text{Land}}, T_{\text{Ocean}})$
Multidimensional Predictability measure

For global variable T_g, the measure is identical to PPP

$$P_{T_g} = P P P_{T_g} = \frac{\sigma^2_{T_g,\text{clim} - \sigma^2_{T_g,\text{ens}}}}{\sigma^2_{T_g,\text{clim}}}$$

Expresses P_{T_g} in terms of the predictabilities of its partitioned subsystems

$$P_{T_g} = \frac{\vec{f}[C_{\text{clim}} - C_{\text{ens}}] \vec{f}^T}{\sigma^2_{T_g,\text{clim}}}$$

where C are covariance matrices
Multidimensional Predictability measure

- Diagonal elements of C are variances of individual subsystems.

- Off-diagonal elements are covariances between pairs of subsystems.

 “Teleconnections”

- For n partitions, P_{Tg} naturally divides into $\frac{n(n+1)}{2}$ predictability components.

\[
\frac{n(n+1)}{2} \quad \frac{n(n-1)}{2}
\]

n from individual subsystems

From teleconnections
Application to a 2D System: Daily Land, Ocean Surface Averaged T

\[T_g = f_L T_L + f_O T_O \]

\[f_L = 0.2875, f_O = 0.7125 \]

\[P_{T_g} = \frac{\sigma_{T_g,clim}^2 - \sigma_{T_g,ens}^2}{\sigma_{T_g,clim}^2} = p_{Land} + p_{Ocean} + p_{Land_Ocean} \]

- Component due to land
- Component due to ocean
- Component due to land, ocean teleconnection

• The 1850 control run is used to estimate climatological quantities
Land-Ocean Decomposition: Initial Value Predictability

\[P_{T_g} \]

Days

Global

1
10
20
30
40
50
60
70
80
90
100

1
0.8
0.6
0.4
0.2
0
-0.2
-0.4

-0.4
Land-Ocean Decomposition: Initial Value Predictability

\[P_{\mathcal{T}_g} \]

\[P_{\mathcal{T}_L} \]

Global

Land
Land-Ocean Decomposition: Initial Value Predictability

Global

Ocean

Land

P_{T_g}

P_{T_o}

P_{T_L}
Land-Ocean Decomposition: Initial Value Predictability

Global

P_{T_g}

P_{T_o}

Days

Ocean

P_{T_g}

P_{T_o}

Days

Land

P_{T_L}

P_{T_L,T_o}

Days

Teleconnection

P_{T_L}

P_{T_L,T_o}
Land-Ocean Decomposition: Initial Value Predictability
Application to a 2D System: 1920 - 2100
Annual-running-mean Land, Ocean Surface Averaged T

\[T_g = f_L T_L + f_0 T_0 \]

\[f_L = 0.2875, f_0 = 0.7125 \]

\[P_{T_g} = \frac{\sigma_{T_g,clim}^2 - \sigma_{T_g,ens}^2}{\sigma_{T_g,clim}^2} = P_{Land} + P_{Ocean} + P_{Land _ Ocean} \]

- The 1850 control run is used to estimate climatological quantities
Application to a 2D System: Annual-running-mean Land, Ocean Surface Averaged T

- On longer time scales, P_{T_g} represents the magnitude of the ensemble variance of T_g with respect to the climatological variance.
 - Cannot be interpreted as “initial-value predictability”

\[
\begin{align*}
 P_{T_g} &> 0, \quad \sigma^2_{T_g,ens} < \sigma^2_{T_g,clim} \\
 P_{T_g} &> 0, \quad \sigma^2_{T_g,ens} > \sigma^2_{T_g,clim}
\end{align*}
\]
Land-Ocean Decomposition: 1921 - 2100

Global

\[\sigma_{ens}^2 < \sigma_{clim}^2 \]

\[P_{Tg} \]

\[\sigma_{ens}^2 > \sigma_{clim}^2 \]
Land-Ocean Decomposition: 1921 - 2100

Global

Land

$\sigma_{ens}^2 < \sigma_{clim}^2$

P_{Tg}

$\sigma_{ens}^2 > \sigma_{clim}^2$

P_{TL}

Years

Land

Global

$\sigma_{ens}^2 < \sigma_{clim}^2$

$\sigma_{ens}^2 > \sigma_{clim}^2$
Land-Ocean Decomposition: 1921 - 2100

\[\sigma_{ens}^2 < \sigma_{clim}^2 \]

\[P_{T_g} \]

\[\sigma_{ens}^2 > \sigma_{clim}^2 \]

\[PT_L \]

\[\sigma_{ens}^2 < \sigma_{clim}^2 \]

\[PT_0 \]

\[\sigma_{ens}^2 > \sigma_{clim}^2 \]
Land-Ocean Decomposition: 1921 - 2100

Global

Ocean

Land

Teleconnection

\[\sigma_{ens}^2 < \sigma_{clim}^2 \]

\[\sigma_{ens}^2 > \sigma_{clim}^2 \]

\[P_{T_L} \]

\[P_{T_0} \]

\[\sigma_{ens}^2 < \sigma_{clim}^2 \]

\[\sigma_{ens}^2 > \sigma_{clim}^2 \]
Land-Ocean Decomposition: 1921 - 2100

Global

Ocean

Land

Teleconnection

\[
\frac{\sigma_{T_g, ens}^2}{\sigma_{T_g, clim}^2}
\]

\[
\frac{\sigma_{T_O, ens}^2}{\sigma_{T_O, clim}^2}
\]

\[
\frac{\sigma_{T_L, ens}^2}{\sigma_{T_L, clim}^2}
\]

\[
\frac{\text{cov}_{ens}}{\text{cov}_{clim}}
\]
Summary

- We have defined a new measure of predictability with desirable properties
 - Unique Property: Naturally splits into predictability of subsystems

- Measure captures the role of teleconnections to predictability

- Teleconnections are important in predictability studies

- Measure gives us insight into the behavior of variances of variables on climate change time scales
Nino, Non-Nino Decomposition: 1921 - 2100

Global

\[\frac{\sigma_{Tg,ens}^2}{\sigma_{Tg,clim}^2} \]

Non-Nino

\[\frac{\sigma_{T_{NN,ens}}^2}{\sigma_{T_{NN,clim}}^2} \]

Years

Nino

\[\frac{\sigma_{T_{N,ens}}^2}{\sigma_{T_{N,clim}}^2} \]

Teleconnection

\[\frac{\text{COV}_{ens}}{\text{COV}_{clim}} \]

Years

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

1921 1940 1960 1980 2000 2020 2040 2060 2080 2100

1921 1940 1960 1980 2000 2020 2040 2060 2080 2100

1921 1940 1960 1980 2000 2020 2040 2060 2080 2100

1921 1940 1960 1980 2000 2020 2040 2060 2080 2100