Impact of Mesophyll Diffusion on Estimated Global Terrestrial Transpiration and Water Use Efficiency

Xiangxiang Zhang1,2
Ying Sun3
Robert E. Dickinson2
Yongjiu Dai1

1Beijing Normal University
2University of Texas at Austin
3NASA Jet Propulsion Laboratory
Mesophyll diffusion:
A strong barrier for CO$_2$ availability for photosynthesis

Mesophyll and stomatal conductances have similar magnitudes

Mesophyll diffusion of CO$_2$ (g_m):
Intercellular air space to the *interior of chloroplast*

Stomatal diffusion of CO$_2$ (g_s):
Atmosphere to *Intercellular air space*
Mesophyll diffusion:
A strong barrier for CO$_2$ availability for photosynthesis

Mesophyll and stomatal conductances have similar magnitudes

Mesophyll diffusion of CO$_2$ (g_m):
Intercellular air space to the *interior of chloroplast*

Stomatal diffusion of CO$_2$ (g_s):
Atmosphere to *Intercellular air space*
The first global mesophyll conductance model

\[g_m = g_{\text{max}} \cdot f_T(T) \cdot f_w(\theta) \]

- **Leaf-level parameterization**
- **Scaling up to canopy level**
 - **Sunlit leaf**
 - **Shaded leaf**
 - **Vertical gradient**
- **Conversion of photosynthetic parameters**

- Ignoring mesophyll diffusion leads to underestimation of CO₂ fertilization effect.

The contemporary biosphere is more CO₂ limited than previously thought.

(Sun et al. 2014)
Water Use Efficiency (WUE):

A critical index bridging water cycle and carbon cycle

WUE has different definitions

\[
WUE = \frac{\text{Rate of Carbon Assimilation}}{\text{Rate of Transpiration}} = \frac{A}{E}
\]
Question:

How does mesophyll diffusion affect simulated WUE?

\[A = g_m (C_i - C_c) = \frac{g_s \cdot g_m}{g_s + g_m} (C_a - C_c) \]

\[WUE = \frac{A}{E} \]
Simulation Design

- **CLM4.5**
 - CTRL - Control run
 - MESO - Simulation with fully updated mesophyll conductance model and recalibrated biochemical parameters of photosynthesis

- **Time**
 - 1901-2010

- **Resolution**
 - $1.9^\circ \times 2.5^\circ$ (lat \times lon)
Without gm, CLM estimated WUE but underestimated long-term trend. Without gm, CLM underestimated ET.
Without gm, CLM underestimated long-term trend
Conclusions

1. Inclusion of mesophyll diffusion in the model results in generally higher simulated transpiration.

2. The long-term trend of increase in WUE due to anthropogenic CO$_2$ emission is underestimated if mesophyll diffusion is not considered.

3. Models might achieve temporary accuracy through parameters tuning but better process representation is required to reliably predict long-term trends.
Thank you for your attention!

Suggestions & Comments are welcomed!

Reporter: Xiangxiang Zhang (zhangxx2011@gmail.com)
June 22, Breckenridge