On the simulation of the QBO in WACCM

by

Jadwiga (Yaga) Richter, J. Bacmeister, R. Garcia, A. Gettleman, S. Santos
Motivation
I. WACCM was built in part to study the coupling between the troposphere and stratosphere as well as middle atmospheric dynamics.
I. WACCM was built in part to study the coupling between the troposphere and stratosphere as well as middle atmospheric dynamics.
Motivation

I. WACCM was built in part to study the coupling between the troposphere and stratosphere as well as middle atmospheric dynamics.

II. The Quasi-Biennial Oscillation (QBO) is one of the most prominent modes of stratospheric variability.
Motivation

I. WACCM was built in part to study the coupling between the troposphere and stratosphere as well as middle atmospheric dynamics.

II. The Quasi-Biennial Oscillation (QBO) is one of the most prominent modes of stratospheric variability.

III. WACCM (and other GCMs) struggle with obtaining an internally generated QBO.
WACCM 4: Prescribed QBO
Pros:
WACCM 4: Prescribed QBO

Pros:

• Better than no QBO

Cons:
WACCM 4: Prescribed QBO

Pros:

• Better than no QBO

Cons:

• QBO has no relation to its forcing mechanisms: Kelvin, Rossby GWs, small-scale GWs
WACCM 4: Prescribed QBO

Pros:
• Better than no QBO

Cons:
• QBO has no relation to its forcing mechanisms: Kelvin, Rossby GWs, small-scale GWs
• QBO does not respond (and it should) to changes in Tropical convection, ENSO, etc
Pros:
• Better than no QBO

Cons:
• QBO has no relation to its forcing mechanisms: Kelvin, Rossby GWs, small-scale GWs
• QBO does not respond (and it should) to changes in Tropical convection, ENSO, etc
• QBO won’t respond to climate change
Pros:
• Better than no QBO

Cons:
• QBO has no relation to its forcing mechanisms: Kelvin, Rossby GWs, small-scale GWs
• QBO does not respond (and it should) to changes in Tropical convection, ENSO, etc
• QBO won’t respond to climate change
• Connection to extra-tropics may be incorrect
WACCM 4: Prescribed QBO

Pros:
• Better than no QBO

Cons:
• QBO has no relation to its forcing mechanisms: Kelvin, Rossby GWs, small-scale GWs
• QBO does not respond (and it should) to changes in Tropical convection, ENSO, etc
• QBO won’t respond to climate change
• Connection to extra-tropics may be incorrect
QBO: Connection to Mid-latitudes

QBOE - QBOW U

OBS

[Graph showing data with color-coded regions and labeled axes]
QBO: Connection to Mid-latitudes

QBOE - QBOW U

OBS

WACCM 4
QBO: Connection to Mid-latitudes

QBOE - QBOW U

OBS

WACCM 4

CAM 5.3 46 L
What is needed to get the QBO?
What is needed to get the QBO?

1. Resolved waves: Kelvin & Rossby GW’s
 -> generated by Convection Scheme
What is needed to get the QBO?

1. Resolved waves: Kelvin & Rossby GW’s
 -> generated by Convection Scheme

2. Small-scale GWs
What is needed to get the QBO?

1. Resolved waves: Kelvin & Rossby GW’s
 -> generated by Convection Scheme

2. Small-scale GWs
 (Parameterized)
What is needed to get the QBO?

1. **Resolved waves: Kelvin & Rossby GW’s**

 -> generated by Convection Scheme

2. **Small-scale GWs**

 (Parameterized)

3. **Adequate Vertical Resolution (500 - 700 m)**

 in troposphere & stratosphere (Giorgetta et al 2002, Richter 2014)
What is needed to get the QBO?

1. Resolved waves: Kelvin & Rossby GW’s
 -> generated by Convection Scheme

2. Small-scale GWs
 (Parameterized)

3. Adequate Vertical Resolution (500 - 700 m)
 in troposphere & stratosphere (Giorgetta et al 2002, Richter 2014)

4. Implicit diffusion in a dynamical core affects the QBO!
 (Yao and Jablonowski 2013)
What is needed to get the QBO?

1. Resolved waves: Kelvin & Rossby GW’s
 -> generated by Convection Scheme

2. Small-scale GWs
 (Parameterized)

3. Adequate Vertical Resolution (500 - 700 m)
 in troposphere & stratosphere (Giorgetta et al 2002, Richter 2014)

4. Implicit diffusion in a dynamical core affects the QBO!
 (Yao and Jablonowski 2013)
QBO in CAM5

30L CAM5 GW

60L CAM5 GW

Richter et al. 2014
QBO in CAM5

30L CAM5 GW

Forcing:

Resolved

Parameterized GW

Richter et al. 2014
More Kelvin Waves

More MRG Waves

QBO in CAM5

60L CAM5

30L CAM5

60 - 30L CAM5
Effects of Dynamical Core:

60L CAM5 GW

SE Dycore

FV Dycore

FV Dycore is more diffusive: period of QBO longer
Other Modeling Centers:

ECHAM-6 Beres
95 levels up to 0.01 hPa (80 km) dx ~1.9 deg;

Schirber et al 2014

NASA GISS Model E
102 levels up to 0.002 hPa (95 km); dx = 2 deg

Rind et al 2014
Standard WACCM Grid for CMIP6: 70L
QBO

OBS

70L WACCM 5.3
ne30 ~ 1°

110L WACCM 5.3
ne30 ~ 1°
QBO Forcing

70L WACCM 5.3
ne30 ~ 1°

Resolved

Parameterized GW

110L WACCM 5.3
ne30 ~ 1°

Resolved

Parameterized GW
WACCM 2 deg with 110L?
WACCM 2 deg with 110L?

110 L
ne 30 (1deg)

110 L
FV 2 x 2.5 deg

Could be tuned to get right period
70L WACCM 5.4 FV
70L WACCM 5.4 FV

70L WACCM 5.4 FV CLUBB
WACCM 5.4 CLUBB

70L WACCM 5.4 FV

70L WACCM 5.4 FV CLUBB

70L WACCM 5.4 FV CLUBB 1800
WACCM 5.4 CLUBB

CLUBB Default

Resolved

Parameterized GW

CLUBB 1800

Resolved

Parameterized GW
SPARC QBOi: Overview

Coordinators: Scott Osprey (U. of Oxford), Neal Butchart (Met Office), Kevin Hamilton (IPRC)

Participating GCMs: LMDz, HadGEM2-CCS, EC-EARTH, GISS Model-E, GEOS-5, CMCC-CMS, AGCM3-CMAM, MIROC-ESM, CAM5, WACCM?
SPARC QBOi: Overview

Coordinators: Scott Osprey (U. of Oxford), Neal Butchart (Met Office), Kevin Hamilton (IPRC)

Participating GCMs: LMDz, HadGEM2-CCS, EC-EARTH, GISS Model-E, GEOS-5, CMCC-CMS, AGCM3-CMAM, MIROC-ESM, **CAM5, WACCM?**

Objectives:
SPARC QBOi: Overview

Coordinators: Scott Osprey (U. of Oxford), Neal Butchart (Met Office), Kevin Hamilton (IPRC)

Participating GCMs: LMDz, HadGEM2-CCS, EC-EARTH, GISS Model-E, GEOS-5, CMCC-CMS, AGCM3-CMAM, MIROC-ESM, CAM5, WACCM?

Objectives:

- Understanding and simulating the QBO, including its sensitivity to model formulation
Objectives:

- Understanding and simulating the QBO, including its sensitivity to model formulation
- Understanding and reproducing the impacts of the QBO, e.g. near the surface, at high latitudes
Objectives:

- Understanding and simulating the QBO, including its sensitivity to model formulation
- Understanding and reproducing the impacts of the QBO, e.g. near the surface, at high latitudes
- Making confident predictions about the QBO and its response to external forcings, such as future climate change
Objectives:

• Understanding and simulating the QBO, including its sensitivity to model formulation
• Understanding and reproducing the impacts of the QBO, e.g. near the surface, at high latitudes
• Making confident predictions about the QBO and its response to external forcings, such as future climate change
SPARC QBOi:

Timeline:

March 2015: 1st Workshop

May 2015: Finalize details of common experiments

May 2016: Complete first set experiments

Fall 2016: 2nd Workshop (Oxford)
SPARC QBOi:

Timeline:
- **March 2015:** 1st Workshop
- **May 2015:** Finalize details of common experiments
- **May 2016:** Complete first set experiments
- **Fall 2016:** 2nd Workshop (Oxford)

Experiments:
1. Recent past and projected climate change
2. Seasonal hindcasts (predictability)
3. Nudging experiments (separating QBO drivers)
SPARC QBOı:

Timeline:

March 2015: 1st Workshop

May 2015: Finalize details of common experiments

May 2016: Complete first set experiments

Fall 2016: 2nd Workshop (Oxford)

Experiments:

1. Recent past and projected climate change

2. Seasonal hindcasts (predictability)

3. Nudging experiments (separating QBO drivers)

More info: http://tinyurl.com/QBOi-html
Higher-Vertical Resolution WACCM

HVR WACCM:

- Doubled vertical resolution: Boundary Layer, Troposphere, Stratosphere, Mesosphere
- 1 deg horizontal resolution
- Preferably SE Dycore
- Convection scheme tuned for PW generation
Higher-Vertical Resolution WACCM

HVR WACCM:
- Doubled vertical resolution: Boundary Layer, Troposphere, Stratosphere, Mesosphere
- 1 deg horizontal resolution
- Preferably SE Dycore
- Convection scheme tuned for PW generation

Timeline:
- **Fall 2016:** 2nd Workshop (Oxford)
- **May 2016:** Complete first set experiments
- **March 2015:** Model Ready?
- **Start Development:** Now!
Higher-Vertical Resolution WACCM

HVR WACCM:

• Doubled vertical resolution: Boundary Layer, Troposphere, Stratosphere, Mesosphere
• 1 deg horizontal resolution
• Preferably SE Dycore
• Convection scheme tuned for PW generation

Timeline:

Fall 2016: 2nd Workshop (Oxford)
May 2016: Complete first set experiments
March 2015: Model Ready?
Start Development: Now!

If this is important to you, come talk to us!