Development of a region-specific fire scheme under the CAM5-CLM4.5 coupling framework

Yufei Zou, Yuhang Wang, Ziming Ke, Yongjia Song

School of Earth and Atmospheric Sciences
Georgia Institute of Technology

CESM BGCWG, June 17th, 2015
Motivation

- What is the relationship between climate variability and fire activities?
- Are the hypothetical two-way interactions significant?
- How will the regional climate be likely to change under the interactive fire forcing?

- Net global mean temperature change by source sectors

A schematic diagram of climate-fire interactions

(IPCC AR5, Chapter 8, 2013)
Methodology—Development roadmap

Stage 1: Fire Scheme Improvement

Finished:
(1) DATM-CLM offline parameterization;
(2) Validation with satellite/in situ observations;

Stage 2: Interaction evaluation

Ongoing:
(1) CAM-CLM online coupling with dynamic fire;
(2) Implementation of multiple constraint/feedback mechanisms;

Stage 3: Decadal prediction

To be started:
(1) Prediction with decoupled fire;
(2) Prediction with coupled fire feedback;

Objectives:
1) Identify key climate factors modulating fire activities;
2) Understand fire feedbacks to regional climate variability;
3) Investigate fully coupled fire-climate interactions;
4) Predict decadal regional climate variability with improved fire forcing;
Methodology—Model vs. Observation

Remote-sensing analysis
- Retrieval validation
- Assumption refinement

Regional Context

Satellite
- MODIS
- CALIPSO
- MISR
Global fire spots;
Aerosol loading;
Aerosol type;
Plume height;

Aerosol-type prediction

Airborne/field campaign
- HIPPO
- ARCTAS
- ARCPAC
- SOAS
- BBOP
- AERONET
Chemical/microphysical
details in fire plumes and
downwind atmosphere;

Model validation
- Parameterization
- Climate sensitivity
- Underlying mechanism

Model
- CLM
- CAM
Space-time interpolation;
Diagnosis and prediction;
Preliminary results—global fire activities

- **Peak Month of Fire Seasons**
- **Monthly burned area**

- 5 PFT Groups
- 14 GFED Regions
Preliminary results—multiple climate factors

💡 Climate factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Ignition (f_m)</th>
<th>Spread (C_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max}</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soil water</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
f_m(i,j) = \frac{NFIRE_{\text{obs}}}{NFIRE_{\text{potential}}} = f(T_{\text{max}}, RH, Prec_10d, wf)
\]

\[
C_m(i,j) = \frac{BA_{\text{obs}}}{BA_{\text{potential}}} = f(RH, Prec_30d)
\]

- f_m: fuel combusitivity on fire occurrence;
- C_m: fuel combusitivity on fire spread;
- $NFIRE_{\text{potential}}$: fire counts without constraints;
- $BA_{\text{potential}}$: burned area with constraints on fire counts only;
- T_{max}: maximum air temperature at 2 m;
- RH: relative humidity;
- $Prec_{10d}$: 10-day running mean total precipitation;
- $Prec_{30d}$: 30-day running mean total precipita;
- wf: soil water for top 0.05 m soil layers;
- i: region id; j: PFT id;

💡 Region-specific natural constraints

[Graphs showing region-specific natural constraints for different regions including scatter plots and trend lines, indicating global and region-specific constraints.]
Preliminary results—human impacts

\[N_f = N_if_a f_m (1 - f_s) \]

- **Anthropogenic constraints**

(1) Suppression effects:

\[BA = N_f a \]
\[a = f(u_{max}, WS, \tau, C_m) \]

- \(N_f \): fire counts;
- \(N_i \): fire counts w/o constraints;
- \(f_a \): fuel availability;
- \(f_s \): fire suppression;
- \(BA \): burned area;
- \(a \): averaged fire spread area;
- \(u_{max} \): maximum fire spread rate;
- \(WS \): wind speed;
- \(\tau \): average fire duration;

(\text{Li et al., 2012})
Preliminary results—global burned area

- Annual Burned Area

- CAM5CLM4.5_Upd

- GFED4, CRUCLM4.5_Org, CRUCLM4.5_Upd, CAM5CLM4.5_Org, CAM5CLM4.5_Upd

- Burned Area (km²/yr) × 10^4

- Burned Area (M km²)

- Burned Area (km²/yr) × 10^4

- Burned Area (M km²)

- CAM5CLM4.5_Upd FAREA_BURNED (%/yr) 2000-2000

- CAM5CLM4.5_Org, CRUCLM4.5_Upd, GFED4, CAM5CLM4.5_Upd
Preliminary results—global fire emissions

- Carbon emissions

\[E_{\text{mis}} = EFs \times (BA \times Biomass \times CC) \]

- Sensible Heat Flux
- Moisture Flux

(M. Z. Jacobson, 2014)
Preliminary results—fire plumes

- Evaluation of plume heights

- 1-D plume rise model (Freitas, et al., 2006) results;

- A fraction (20-30%) of fire plumes inject directly into the free troposphere during daytime;

- Incompatible scales between the 1-D model and the 3-D global model;

- Requires simplified plume rise parameterization for 3-D modeling implementation;
Preliminary results—fire plumes

- **MISR satellite observations**
 - MISR 2002-2010

- **Plume heights fitting**

 The key parameters: (1) virtual injection velocity; (2) boundary layer height;

 \[
 w_0 = \frac{5}{6\alpha} \left(\frac{0.9\alpha F}{z_v} \right)^{1/3}
 \]
 (Viegas, 1998)

- **PLUMEH vs. FRP**
- **PLUMEH vs. \(w_0 \)**

 - Better correlation between virtual injection velocity and plume heights;
 - The fitting results can capture the major pattern of MISR plume heights: lower in tropics and higher in high latitudes.
Summary

- **Implications**
 1. Both climate and human activities play important roles in modulating fire activities;
 2. The updated fire scheme has good performance in both off-line and on-line simulations;
 3. Fully coupled fire-climate simulations are feasible although fire feedbacks to the climate system dependent on the mechanisms considered.

- **Working plan**
 1. Finish online coupled fire parameterization with more feedback mechanisms (BrC radiative effects, land cover change, etc.);
 2. Evaluation of interactive processes in the fire-climate system;
 3. Decadal predictions with fully coupled fire-climate forcing;
Acknowledgement

• NSF EaSM Project: #1243220

• Research collaborators:
 Dr. Yi Deng (Georgia Institute of Technology),
 Dr. Hanqing Tian (Auburn University)
 Dr. Xiaohong Liu (University of Wyoming)
 Dr. Yun Qian (Pacific North National Laboratory)
 Dr. Yongqiang Liu (Center for Forest Disturbance Science)