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Outline

e Land-channel interactions

e Existence of the fan of influence (Fol) of
streams

e Systematic experiments to quantify Fol



River transport model in the land model

e River Transport Model (RTM) in
CLM, or VIC Community Land Model Water Balance

e Recent updates in MOSART . —
greatly enhanced in-channel
process representation
(temperature, velocity)

No feedback!

Does channel processes influence
upland dynamics? L e

Grid Cell {T42): Precipitatian + Inflow - Evapotranspiration - Outflow

Column Hydrology - T42 grid

http://www.cgd.ucar.edu/tss/clm/components/hydrocycle.html



Channel-land interactions

Channels serve as boundary conditions for

groundwater flow

Bank storage
and return flow

Flood innundation

Hyporheic
exchange

EXPLAMATION

L] Direction of gmound- vater

HOT TO 20l LE

http://pubs.usgs.gov/ha/ha730/ch_f/F-text2.html



Research questions

Using a physically-based hydrologic-land surface
model (PAWS+CLM), we attempt to understand:

* Does the density of simulated channel
network influence upland hydrology and BGC?

 What are the controlling factors of the
influences?

 What are the spatial extent and magnitudes of
the influences?



Outline

e Land-channel interactions

e Existence of the fan of influence (Fol) of
streams

e Factorial experiments to quantify Fol



Channel-land interactions represented
in PAWS+CLM

e Overland flow (OVN) with lowland storage
(9-point adaptive FV scheme)

e Explicitly represented channel network (DiW or DyW)

e Overland-channel exchange -

 GW-channel exchange s

(Darcy’s law)

\ i
Lowland-GW exchange @) e
(Darcy’s law)




Test basin

Upper Grand
(4527 km?)

Humid-continental
climate

Annual precip
~900mm

Stream network
is dense
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An initial investigation

e WWe removed channels |
from a base simulation !

with dense channel
network (0.3011
km/km?)

e Removed channel
segments2>AC

e OVN takes the role
of channel network

Depth to bedrock (m)
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| I89.14

GO Y - | 64.17

39.2

14.22



Groundwater level dropped near AC

e We notice a “fan of influence” (Fol) of the streams.

e The Fol for variable v is defined as the zone where significant
change in v is observed due to the presence of channels
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Mechanisms 1: GW exfiltration via river bed

* Increased baseflow: Liebig’s barrel.

e Elevation often decline sharply near streams, which are

often thin features not captured by land grid.

Minimum

http://en.wikipedia.org/wiki/Liebig%27s_law_of the_minimum |__ e

e Only significant for gaining streams (higherrer
streams)



Negative feedback between channel
stage and GW level

e |n fact, our extracted river bank elevation
agreed well with local GW level.

Elevation profile before and after processing
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Shen, C., Niu, J. and Fang, K.: Quantifying the effects of data integration algorithms
on the outcomes of a subsurface—land surface processes model, Environ. Model.
Softw., 59, 146-161, doi:10.1016/j.envsoft.2014.05.006, 2014.



Baseflow only simulations

(BF) removes surface
flow.

BF sims help single out
effects of GW flow

AHBY (AC) is only
significant near AC
segments that were
gaining baseflow.
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Controlling factors of AH®" (AC)

e Regression analysis reveals that AHBY (AC) is
controlled by L and its spatial auto-correlation

o _ (E'rb_H)
L= v X Kpp Xw X1

This the baseflow formula in PAWS

(K, hydraulic cond. river bed material, w, river width, [, length of
intersecting river segments)

 Multiple regress using L, its autocorrelation index

and first order interaction explained 70% of the
variance in AHBY (AC)



Mechanisms 2: Faster conveyance by streams

e Although sinks are removed from elevation grid, and overland
is capable of eventually directing all runoff downstream,
channel network is much more efficient at conveyance.

 Therefore, channel network reduces surface ponding storage
and re-infiltration
0.001347
I—0‘04918
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-0.2008

Ahovn (m)




Influence of streams on fluxes...

e |nfiltration Ph{inf) (%)

10.01
More infiltration
on AC-cells. 6.73
N | 13.452
| Fo.1743
_3.104




Influence of streams on fluxes...

c 0 =5(ng) 5 (6 F)

AC-cells have a lot more AQ, (mmiyr)
inflow, while adjacent B |
cells lose more water
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Influence of streams on fluxes...
PD(Q
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1 15.77

perc) (O/O)

° O~perc
Deep percolation

More deep percolation

in adjacent cells, '
which then exiltrate
under channel bed.

Stronger flow a2
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all directions!
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Influence of streams on fluxes...

* ET

Max 10% due to

lowered water
table

PD(ET) (%)
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Influence of streams on fluxes...

* NPP

Influence is

PD(NPP) (%)

seen far upland. | &

Quite significant |

for areas with
low NPP
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Influence of streams on fluxes...

e NEE 31.55

Positive NEE | I

Mainly due to | 7>

reduction in "

NPP W) | [18.88
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Outline

e Land-channel interactions

e Existence of the fan of influence (Fol) of
streams

e Factorial experiments to quantify Fol



Factorial experiments

Resolution 4

(m)

(1600)
D level

(km/km?)

Srox1 Srox2 Srox3 Srox4 Srixs
1 (0-156) Srlxl Sr1x2 Sr1x3 Sr1x4- Sr1x5
2 (0-118) Sr2x1 Sr2x2 Sr2x3 Sr2x4- Sr2x5
3 (0.156) Srax1 Sr3x2 Srax3 Sraxa Sr3xs
4 (0-038) Sr4x1 Sr4x1 Sr4x3 Sr4x4 Sr4x5

Serl Sr5x1 Sr5x3 Sr5x4 SerS




Varying channel density

e Systematically
trimmed tributaries,
first order streames,
short and thin streams
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Area of the Fan of Influence as a
function of D and grid resolution
Fol is assessed at 10% change as compared to

blank simulation, where D=0
FOI for variable GW
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Area of the Fan of Influence as a
function of D and resolution

Fol(Inf) is very localized

FOI for variable Inf
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Area of the Fan of Influence as a
function of D and resolution

Impacts on Q,and Q,,,. are very wide-spreading

perc

FOI for variable Qperc
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Area of the Fan of Influence as a
function of D and resolution

NPP and NEE have wider FOI than ET
FOI for variable npp

10
0
-
()]
i
2 _10-
_|G_'J
s f
Z 20 Bl 3200m
32 1600m
-30" I 800m
B 400m
_40

0 005 01 015 02 025 0.3
River Density (km/km2)



Area of the Fan of Influence of unit
stream length

We calculate the area of Fol for each unit of stream by
dFO0I(D)

oD
interval for only the dominant sign.

Fol Area per unit added channel for Qperc

numerically approximating the at the midpoint of the
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Area of the Fan of Influence of unit
stream length

We calculate the area of Fol for each unit of stream by
dFO0I(D)

oD
interval for only the dominant sign.

Fol Area per unit added channel for nee

numerically approximating the at the midpoint of the
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Basin-average fluxes

 Impacts on the overall annual average basin
flux are limited, except for Basin outflow

Long-term basin—-average: Qout
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Basin-average fluxes

 Impacts on the overall annual average basin
flux are limited

Long-term basin—average: npp
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Conclusions

The existence of rivers influences upland hydrologic and land surface
fluxes. The impact forms a Fan of Influence that reaches far and wide into
the hillslope for some variables.

Simulated channel heavily alters the flow network, which may have
implications on the residence time and fate of biogeochemical species and
residence

The impacts of channel network is mainly due to (1) groundwater
baseflow and insufficient resolution of gradients adjacent to streams
(<=100m); and (2) more efficient conveyance of water downstream by
streams. The former is most apparent with larger, perennial segments. The
latter is present even with small, ephemeral streams. This understanding
may help us build scale-aware models to overcome these difficulties.

The impacts on basin-average fluxes is limited (so not the end of the
world), but creates large spatial heterogeneity

Increasing grid resolution cannot reduce the effect of channel density
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