Progress in full coupling between ice sheets and climate in CESM

Jeremy Fyke (LANL), Bill Sacks (NCAR), Bill Lipscomb (LANL), Miren Vizcaíno (U. Delft), Jan Lenearts (U. Utrecht), Tony Craig (NCAR), Peter Lauritzen (NCAR)

- Overview of ice-sheet/climate coupling in real world
- New coupling links in model
- Ongoing work and future plans
What do we mean by ice-sheet/climate coupling?

Climate passes:
- Surface mass balance (SMB)
- Boundary temperatures
- Sub-shelf melt/freeze rates

Ice sheet passes:
- Elevation
- Ice sheet extent
- Solid ice discharge (icebergs)
- Sub-shelf geometry
Climate passes:

- **Boundary temperature**

- **Surface accumulation**

- **Surface melt/sublimation**
 - Lipscomb et al., 2013; Vizcaino et al., 2013 & 2014;
 - Fyke et al., 2014, Fyke et al., in review.

- **Sub-shelf melting**
 - (/freeze-on)

Need for Antarctica!
Ice sheet takes climate-derived forcing and moves
Ice sheet passes: solid ice discharge (calving)

Freshwater addition
Heat extraction
Ice sheet passes: solid ice discharge (calving)

- Solid ice routing replaces snow-capping scheme over ice sheets
- Could fix excess frazil ice growth due to artificial concentration of +/- winter POP fluxes of moisture/heat
Ice sheet passes: elevation changes

NASA/Bamber et al., 2013
Ice sheet passes: elevation changes

- Script-based approach regenerates global CAM topography at every coupled model resubmission point (~1 year)
- Time series trends from 100-year transient simulation bracketed by snapshot simulations -> coupling appears successful

Surface temp

Total cloud

Precip rate

Near-surface wind
Ice sheet passes: ice extent changes

retreat

in-situ inception
dynamic advance
• CLM extensively re-written to accommodate advancing/retreating land units (Bill Sacks presentation)
• CLM extensively re-written to accommodate advancing/retreating land units (*Bill Sacks presentation*)
• CISM-calculated *margin retreat* -> vegetated area expansion
• CLM extensively re-written to accommodate advancing/retreating land units (*Bill Sacks presentation*)
• CISM-calculated **margin retreat** -> vegetated area expansion
• CISM-calculated **dynamic advance** -> vegetated area retreat
if (constant_snowpack and time>time_{snow_persistence_max })
then is_icesheet = .true.

- CLM extensively re-written to accommodate advancing/retreating land units (*Bill Sacks presentation*)
- CISM-calculated margin retreat -> vegetated area expansion
- CISM-calculated dynamic advance -> vegetated area retreat
- CLM-calculated in-situ inception advance -> veg. area retreat
• CLM extensively re-written to accommodate advancing/retreating land units (*Bill Sacks presentation*)
• CISM-calculated *margin retreat* -> vegetated area expansion
• CISM-calculated *dynamic advance* -> vegetated area retreat
• CLM-calculated *in-situ inception advance* -> veg. area retreat
• CLM extensively re-written to accommodate advancing/retreating land units (*Bill Sacks presentation*)
• CISM-calculated **margin retreat** -> vegetated area expansion
• CISM-calculated **dynamic advance** -> vegetated area retreat
• CLM-calculated **in-situ inception advance** -> veg. area retreat
Climate passes:
- Surface mass balance (SMB)
- Boundary temperatures
- Sub-shelf melt rates

Ice sheet passes:
- Elevation
- Ice sheet extent
- Solid ice discharge (icebergs)
- Sub-shelf geometry

Two-way coupled model for “primarily grounded” ice sheet complete
Ongoing work and future plans

- 2-way coupling nominally complete (SIA CISM 1, 1 degree CLM4.5, 1 degree CAM 5 FV, POP2, CICE4)
- Description in in-prep GMD-style manuscript
- Stress-testing of coupled model:
 - Development of partially-coupled configurations
 - Development of asynchronous coupling
 - Fixing “coupled-only” bugs and issues
- Validating 2-way coupled model
- Continuing development (e.g. CISM2, firn, multiple ice sheet instances, improved downscaling, explicit icebergs, coupled model tuning...)

Thanks