Influence of reorganization of the tropical hydrologic cycle on Atlantic salinity and meridional overturning at the end of the last interglacial

Benjamin Blazey, Matthias Prange, André Paul, Aline Govin

Image credit NASA
The Amazon river system
The Amazon & Orinoco river systems
South American precipitation seasonality

Percent of annual precipitation

Figure: Silva and Kousky 2012
South American precipitation seasonality

Figure: Silva and Kousky 2012
Core locations

- 12°N
- 5°N
- Orinoco
- Lowland (Negro)
- Andes (Solimões, Madeira)
- Amazon
- NBC retroflection
- NECC
- NBC: North Brazil Current
- NECC: North Equatorial Counter Current

Color bar:
- DRY: -1.4
- In(Al/Si): -1 to -1.4
- WET: -1.2 to 0
- DJF rainfall: 0 to 400 (mm)
Core reconstructions
Model environment & simulations

We use two equilibrated simulations: 125ka and 115ka

We use boundary conditions including insolation and greenhouse gases
CCSM3 annual net precipitation anomalies
Runoff model & data

<table>
<thead>
<tr>
<th>River</th>
<th>115 ka</th>
<th>125 ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>3560 km³/yr</td>
<td>3070 km³/yr</td>
</tr>
<tr>
<td>Madeira & Marañón</td>
<td>1720 km³/yr</td>
<td>1460 km³/yr</td>
</tr>
<tr>
<td></td>
<td>(48%)</td>
<td>(41%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>River</th>
<th>115 ka</th>
<th>125 ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>3560 km³/yr</td>
<td>3070 km³/yr</td>
</tr>
<tr>
<td>Orinoco</td>
<td>350 km³/yr</td>
<td>430 km³/yr</td>
</tr>
<tr>
<td></td>
<td>(10%)</td>
<td>(14%)</td>
</tr>
</tbody>
</table>
Runoff model & data

125 ka to 115 ka Change in POP Oceanic Transport
Vertically Integrated Currents

Core at 12°N

<table>
<thead>
<tr>
<th>River</th>
<th>115 ka</th>
<th>125 ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>3560 km³/yr</td>
<td>3070 km³/yr</td>
</tr>
<tr>
<td>Orinoco</td>
<td>350 km³/yr</td>
<td>430 km³/yr</td>
</tr>
</tbody>
</table>

(10%)

(14%)
South American Runoff

125ka to 115ka Change in Surface Runoff

125ka to 115ka Change in Freshwater Flux

km³/yr

kg/m²/y
Fixed Runoff Experiment

115ky insolation & GHG

Fully Coupled

Exception: Virtual freshwater flux from South America is fixed:

-115ky or 125ky runoff

-Monthly means (smoothed)

-115ky runoff > 125ky runoff
Fixed Runoff Experiment: Atlantic Upper Ocean Salinity

Salinity difference (115 less 125)

ppt
Fixed Runoff Experiment:
Atlantic Upper Ocean Temperature
Fixed Runoff Experiments: Winter Mixed Layer Depth
Summary

We found the model & core reconstructions to be in agreement with regards to the transition from 125ka to 115ka including:

- Increase in highland precipitation in Amazon basin
- Decrease in Orinoco basin precipitation
- Increase in North Brazil Current Retroflection

Enhanced precipitation over South America at 115ka relative to 125ka leads to changes in the Atlantic including:

- Lower Salinity in deep water formation regions
- Lower Temperature in deep water formation regions
- Weakening of deep water formation
- Northward shift in deepwater formation region