Southern Ocean Ventilation

Matthew C. Long
Climate and Global Dynamics Division
National Center for Atmospheric Research

with
Gokhan Danabasoglu and Peter Gent

Ocean Model Working Group Meeting
June 2013
Ventilation biases

Long et al. [2013]
Meridional overturning circulation

The diabatic Deacon Cell

After Marshall and Radko, JPO, 2003
Resolved and parameterized transport

Tracer transport

\[\frac{\partial \varphi}{\partial t} + (u + u^*) \cdot \nabla_h \varphi + (w + w^*) \frac{\partial \varphi}{\partial z} = R(\varphi) + D_V(\varphi) + J(\varphi) \]

Eddy-induced advection

\[u^* = \left(\kappa_{thic} \frac{\nabla_h \rho}{\rho_z} \right)_z \] and \[w^* = -\nabla_h \cdot \left(\kappa_{thic} \frac{\nabla_h \rho}{\rho_z} \right) \]

Isopycnal mixing

\[R(\varphi) = \nabla \cdot \left(\kappa_{iso} \begin{bmatrix} 1 & 0 & -\rho_x/\rho_z \\ 0 & 1 & -\rho_y/\rho_z \\ -\rho_x/\rho_z & -\rho_y/\rho_z & |\nabla_h \rho|^2 / \rho_z^2 \end{bmatrix} \cdot \nabla \varphi \right) \]

\[\chi_y = \partial X / \partial y \]

\[\nabla_h = \text{horizontal divergence operator.} \]
Horizontal uniformity in surface layer, attenuation with depth

\[\kappa = f(x, y, z, t) \]

Boundary layer

Transition layer

Interior

\[\rho \]

Spatially uniform horizontal mixing

\[N_{\text{ref}}^2, K_{\text{max}} \]

\[K(z) = \max \left(\frac{N_{\text{ref}}^2}{N_{\text{ref}}^2}, 0.1 \right) K_{\text{max}} \]

\(\Downarrow \) = Diabatic mixing

:: Parameterization ::
Mechanisms controlling uptake

Vertical transport within ACC

- **Eulerian advection**
- **Diapycnal mixing**
- **Bolus**
- **Redi**

- GM-bolus term opposes Eulerian-mean advection;
- Diapycnal mixing and isopycnal diffusion (Redi) dominate transport into the interior.

:: Sensitivity experiments ::
Sensitivity experiments: κ_{iso}

κ_{iso} profile

Southern Ocean mean κ_{iso} profile

$\kappa_{iso} \geq 1000$ (z > -1000m)

κ_{iso} asympt. = 0.4 × max

κ_{iso} asympt. = 0.2 × max

κ_{iso} Control

TTT = f(LR × 5)
Sensitivity experiments: κ_{iso} (& κ_{thic})

pCFC-11 bias (zonal mean section)

pCFC-11 change

- $\kappa_{iso} \uparrow 20\%$
- $\mathrm{TLT} = f(L_R \times 5)$
- $\kappa_{iso} \geq 1000 \ (z > -1000\mathrm{m})$
- κ_{iso} assympt. = $0.2 \times \max$
- κ_{iso} assympt. = $0.4 \times \max$
Stratification bias

August-October mixed layer depth ($\Delta \sigma_\theta = 0.03$)

Dong et al. 2006
Sensitivity experiments: boundary layer processes

pCFC-11 bias (zonal mean section)

pCFC-11 change

- $k_x \times 2 \ (z > -600m)$
- $\kappa_{iso} \ \text{assympt.} = 0.2 \times \text{max}$
- $k_x \times 10 \ (z > -600m)$
- $\kappa_{iso} \ \text{assympt.} = 0.2 \times \text{max}$

Submesoscale mixing off
Interaction between surface boundary and isopycnal mixing

Southern Ocean mean κ_{iso} profile

Control

$k_y \times 10 \ (z > -600 \text{m})$

κ_{iso} asympt.

$= 0.2 \times \text{max}$
Seasonal handoff: boundary layer to isopycnal mixing

Vertical fluxes in ACC

:: Sensitivity experiments ::
Vertical transport within ACC

CFC flux [10^6 mol yr$^{-1}$]

-6.0 -4.0 -2.0 0.0 2.0 4.0

0.0

Depth [km]

0.0 0.2 0.4 0.6 0.8 1.0

Submeso

Diapycnal mixing

Eulerian advection

Bolus

Redi

Control

min $\kappa \times 0.2$

min $\kappa \times 0.4$

:: Sensitivity experiments ::
Sensitivity experiments: boundary layer processes

Mixed layer depth biases [m]

- Control
- $\text{Ri}_c(0.3 \rightarrow 0.6)$
- Submeso off
- Langmuir v0.0
- $k_v \times 2 \ (z > -600m)$
- $k_v \times 10 \ (z > -600m)$
Large-scale dynamics control mixed layer biases

Control

\[
\text{min } \kappa \times 0.2
\]

\[
\text{min } \kappa \times 0.4
\]

MLD bias/change

:: Sensitivity experiments ::
What is the spatial distribution of eddy diffusivity: $\kappa \sim u_{\text{rms}}L_{\text{mix}}$?

0.1° POP RMS Velocity

$u_{\text{rms}} = \sqrt{\text{EKE}}$
Main points

- Ventilation of AAIW and SAMW in the CESM ocean component is deficient;
- Improvements are realized with enhanced diapycnal or isopycnal mixing, but most responsive to both;
- Depth attenuation in isopycnal mixing scheme is fairly flexible (tune-able) and probably fairly realistic; and
- Spatial variability in lateral mixing at the surface is likely to be a feature of the real ocean: need a theory.