A New Finite Element Ice Sheet Dycore Built for Advanced Analysis

Andy Salinger, Irina Kalashnikova, Mauro Perego, Ray Tuminaro, Mike Eldred, John Jakeman (SNL)
Bill Lipscomb, Steve Price, Matt Hoffman (LANL)
Pat Worley (ORNL)

CESM Workshop, Land Ice Working Group
June 18, 2013

PISCEES SciDAC Project: Lipscomb (PI), Jones (Actg PI)
Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research.
The Objectives of our Development Effort under PISCEES:

<table>
<thead>
<tr>
<th>To Develop:</th>
<th>robust & scalable unstructured-grid finite element ice sheet code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Higher-Order model for stress-velocity solves (non-linear Stokes with Glen’s law viscosity, 3D, 2 velocities)</td>
</tr>
<tr>
<td></td>
<td>• Stand-alone steady-state model for initialization and calibration</td>
</tr>
<tr>
<td></td>
<td>• Dynamic model when linked to CISM or MPAS for advection</td>
</tr>
<tr>
<td></td>
<td>• Future land ice component for earth system models</td>
</tr>
</tbody>
</table>

| To Support: | climate decision support missions, such as providing Sea Level Rise predictions |

| To Leverage: | software and expertise from SciDAC Institutes (FASTMath, QUEST, SUPER) and hardware from DOE Leadership Class Facilities. |
Key Algorithm and Software Choices Help Meet our Objectives

Unstructured Grid Finite Element Discretization:
- Regional refinement
- Natural treatment of stress Boundary Conditions

Full Newton with Automatic Analytic Derivatives, Preconditioned Iterative Solvers:
- Most robust and efficient for steady-state solves
- Scalability

Born for Decision Support Role:
- Verification
- Analytic sensitivity analysis; Analytic gradients for inversion

Scalability of Software Development:
- Software tools & processes (e.g. nightly regression/integration tests)
- Leveraging of capabilities (e.g. from SciDAC Institutes)
New Code Developed using Libraries for everything but PDE Description

Software Quality
- Version Control
- Regression Testing
- Build System
- Backups
- Verification
- Continuous Integration

Linear Algebra
- Data Structures
- Iterative Solvers
- Direct Solvers
- Eigen Solver
- Preconditioners
- Multi-Level Methods

Analysis Tools (embedded)
- Nonlinear Solver
- Time Integration
- Continuation
- Sensitivity Analysis
- Stability Analysis
- Optimization
- UQ Solver

Mesh Tools
- Mesh Database
- Mesh I/O
- Inline Meshing
- Partitioning
- Load Balancing
- Adaptivity
- DOF map

Discretizations
- Discretization Library
- Field Manager

Derivative Tools
- Sensitivities
- Derivatives
- Adjoint
- UQ / PCE Propagation

Utilities
- Input File Parser
- Parameter List
- Memory Management
- I/O Management
- Communicators

Analysis Tools (black-box)
- Optimization
- UQ (sampling)
- Parameter Studies
- Bayesian Calibration
- Reliability

PostProcessing
- Visualization
- Verification
- Model Reduction

40+ packages; 120+ libraries
Higher-Order Model Verification #1: Solution Verification

Nonlinear Stokes’ Model for Ice Sheet Stresses

\[-\nabla \cdot (2\mu \dot{e}_1) = -\rho g \frac{\partial s}{\partial x}\]
\[-\nabla \cdot (2\mu \dot{e}_2) = -\rho g \frac{\partial s}{\partial y}\]

Method of Manufactured solutions:

\[u = \sin(2\pi x) \cos(2\pi y) + 3\pi x,\]
\[v = -\cos(2\pi x) \sin(2\pi y) - 3\pi y\]

• Ack: Irina Kalashnikova
Higher-Order Model Verification #2: Code-to-Code Comparisons

ISMIP-HOM Test C

...as well as:
ISMIP-HOM Test A
Confined Shelf
Circular Shelf

Dome Problem

Trilinos FELIX
Glimmer CISM
LifeV
Q: How to import Real data (Geometry, Topography, Surface height, Basal traction, Temp.)?

Answer #1: Glimmer-CISM-Glissade
- Structured Grid
- Square grid (extruded as Hexs)
- Compatible with CESM, CISM, POP
- Serial Glissade → file → FELIX → Mesh, then rerun in parallel

Greenland (Jakobshavn close-up) “5km” data sets

Answer #2: MPAS-Ice
- Unstructured CVT Grid
- Triangular dual grid (extruded as Tets)
- Compatible with MPAS-Ocean
- Parallel, using MPAS decomposition
Regular Grid Results: Greenland

Surface Velocity Magnitude [m/yr] in x-z planes. (Height “z” is stretched 100×.)

5 km resolution
640K hex elements
1.44M Unknowns
Const $\beta>>1$
Const T
MPAS Grid Results: Greenland & Antarctica

Greenland (Jakobshavn close-up)
Const β, T

Antarctica (10km)
$\beta=10^5$ [Land]; 10^{-5} [Floating]
Temperature = Linear

Variable β, T
Robustness: Full Newton Method augmented with Homotopy Continuation

\[\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \hat{e}_{ij}^2 + \gamma \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \]
Scalability: Initial Data (On Hopper)

Weak Scaling on ISMIP Test problem:
- 60% Efficiency after 4096x scale-up
- Finite Element Assembly nearly constant
- Linear algebra fast but not constant
- Ack: Ray Tuminaro

Strong Scaling on gis2km steady solve:
- 4.5x speed-up on 8x processors
- Absolute times are small
- Setup/PostProcessing cost not shown
- Ack: Pat Worley
Uncertainty Quantification #1: Propagation of Uncertainties

Uncertainty Propagation for 1-Parameter Sliding law for Dome Problem

\[\beta = \text{Normal Distribution (mean}=1.0; \text{std deviation }= 0.2) \, [\text{kPa a / m}] \]

- 1000 samples using Dakota
- Library-mode Dakota \(\Rightarrow\) 1 run of code, only 1 setup cost
Bayesian Calibration against Synthetic Data for 4-Parameter Sliding law for Dome Problem

\[\beta = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 r \]

Using QUESO tool via Dakota framework in collaboration with QUEST SciDAC Institute
Summary and Future Work

Summary:
• New Finite Element dycore is being developed, nearly ready for Science
• Higher-Order PDEs, sliding BCs, floating BCs are implemented
• Through use of libraries/frameworks code already has:
 • Configuration, build, porting, test, verification
 • Parallel, robust, scalable, sensitivities, UQ propagation and calibration
 ➢ All for ~1 FTE of effort!

Ongoing/Future Work:
• Dynamic evolution driven by MPAS, CISM
• Deterministic inversion with adjoint-based gradients
• Stochastic calibration with subsequent propagation for predictions
• Improvements to: porting, integration testing, scalability, performance, robustness, UQ

Acknowledgements: DOE OSc SciDAC program;
PISCEES team members B. Lipscomb, S. Price, M. Hoffman,
P. Jones, K. Evans, P. Worley, M. Gunzburger, and C. Jackson;
Trilinos/Dakota collaborators, including E. Phipps and L. Swiler.