
SEBASTIAN H. MERNILD
Glaciology and Climate Change Laboratory, Center for Scientific Studies/ Centro de Estudios Científicos (CECs), Valdivia, CHILE, mernild@cecs.cl and smernild@gmail.com

GLEN E. LISTON
Cooperative Institute for Research in the Atmosphere, Colorado State University, Colorado, USA

CHRISTOPHER A. HIEMSTRA
U.S. Army Cold Regions Research and Engineering Laboratory, Ft. Wainwright, Alaska, USA,
Outline

- Model setup and input,
 - Preliminary spatial/temporal GIC SMB and runoff results,
 - Preliminary GIC mass-balance contribution to global sea-level rise.
Model purpose:
To simulate GIC conditions in SnowModel:
- Surface air temperature,
- Precipitation,
- Evaporation/sublimation,
- Surface melting,
- Refreezing,
- Freshwater runoff,
- SMB, and
- SMB contribution to sea-level rise.

For each:
- Individual GIC,
- GIC complex, and
- GIC region.

Earlier studies: GIC contribution to sea-level:
- Hock et al. (2009),
- Radic and Hock (2011),
- Marzeion et al. (2012),
- Grinsted (2013),
- others…
Model setup and input:
- NASA MERRA (Modern-Era Retrospective Analysis for Research and Applications) atmospheric reanalysis data,
- Simulation period 1979 to 2009,
- 3-hour time step,
- NOAA GLOBE DEM (1-km horizontal grid),
- Randolph Glacier Inventory,
- Grid cells only included if covered by >50% of glacier ice,
- 15 GIC regions (IPCC),
- Obs GIC mass-balance time series (n=76) for verification.
Model verification and test:

- Individual GIC observed time series of winter, summer, and net balances were used for verification/adjustment of simulations,
- Regional verification/adjustment.
- GIC n=76 (long-term time series),
- For regions with less/no GIC observations: We used verification/adjustment mass balance coefficients as a surrogates from neighboring regions, where climate conditions were almost similar fx Greenland, Arctic Russia…

- FIG: Randomly shown examples of three GIC and regions,
- FIG: Individual GIC mean obs vs. sim SMB (able to reproduce mean annual SMB conditions and trends).
Simulation examples:

SE Greenland (Sermilik Fjord area)

Mean 1979–2009 for:
- MAAT,
- SU+E,
- P, and
- R
Simulation examples:

SE Greenland (Sermilik Fjord area)

Annual trends from 1979 to 2009 for:
- MAAT,
- SU+E,
- P, and
- R
Simulation examples:

Himalaya (Karakoram Range)

Mean 1979–2009 for:
- MAAT,
- SU+E,
- P, and
- R
Simulation examples:

Himalaya (Karakoram Range)

Annual trends from 1979 to 2009 for:
- MAAT,
- SU+E,
- P, and
- R
Differences between decades
Regional annual and cumulative GIC mass-balance time series, and SLE contribution
Conclusions

• New era of simulations based on the Randolph Glacier Inventory.
• Spatial and temporal variability in surface conditions between individual GIC and regions.
• On regional scale, all 15 regions had cumulative mass-balance loss since 1979.
• Able to reproduce the positive GIC mass-balances for Scandinavia in the 1990s.
• For 1979-2009 GIC mass-balance contribution $\sim 0.59 \pm 0.08$ mm SLE yr$^{-1}$, and for the last decade 1999-2009 $\sim 0.85 \pm 0.12$ mm SLE yr$^{-1}$.