A Circulation Pattern that Affects US Heat Wave Likelihood on Subseasonal time scale

Haiyan Teng and Grant Branstator
NCAR

Breckenridge, Jun18, 2013

Jerry Meehl, Warren Washington
Hailan Wang
Andy Mai
Scientific questions

Are there internally generated large-scale midlatitude circulation anomalies that affect the likelihood of US heat waves on subseasonal time scale?

Experiment

12,000-year CAM3 forced by monthly varying present-day SST and sea ice extent at T42 resolution
subseasonal stddev

CAM3 1000yr TAS

CAM3 1000yr precipitation

NCEP/NCAR 1948-2012 TAS

GPCP 1979-2010 precipitation
Heat wave statistics

27 heat wave days from 17 events
16199 heat wave days from 5949 events
\[\bar{F}_3 = \sigma \cos \phi \left(\frac{\bar{v}^*}{2} - \frac{1}{2\Omega \sin 2\phi} \frac{\partial}{\partial \lambda} \left(\bar{v}^* \bar{\phi}^* \right) \right) \]

\[-\bar{u}^* \bar{v}^* + \frac{1}{2\Omega \sin 2\phi} \frac{\partial}{\partial \lambda} \left(\bar{u}^* \bar{\phi}^* \right) \]
Shading: \(-\nabla^{-2}V' \cdot \nabla \zeta'\)

contour: psi300 composite

PSI300 tendency from synoptic eddies
Conditional probability of heat waves

on the amplitude of the wavenumber-5 pattern 15 days earlier
Are these results applicable to the real world?
Summary

• Based on a 12,000-year CAM3 integration, we show that the US heat waves tend to be preceded by amplification of a zonal wavenumber-5 planetary wave pattern by 15-20 days.

• This intrinsic circulation pattern resembles the observed leading pattern of subseasonal variability and it may affect likelihood of US heat waves on subseasonal time scale.

• Variability of the wavenumber-5 pattern can be generated solely by internal dynamics rather than being a response to Asian Monsoon rainfall. Hence accurate predictions of the tropical intraseasonal variability may not guarantee subseasonal predictions of US heat waves.