Quasi-Biennial Oscillation in WACCM: Parameterization and Evaluation

Han-Li Liu1, Xianghui Xue2, Rolando Garcia3, Mike Mills3

1. High Altitude Observatory, National Center for Atmospheric Research
2. University of Science and Technology of China
3. Atmospheric Chemistry Division, National Center for Atmospheric Research
Overview

• Absence of QBO in WACCM and possible causes.
• Development of an inertio-gravity wave (IGW) parameterization scheme.
• Evaluation of WACCM simulations with the IGW.
 – Zonal mean wind, temperature, ozone at the equator.
 – Extratropical effects.
 – Surface signature.
Possible Driving Forces of QBO

- $F(GW/IGW)$ likely much larger than $F(PW)$
- PW (Kelvin waves, Rossby-gravity waves) resolved by WACCM (albeit weak).
- Mesoscale GW parameterized, breaking mainly in mesosphere.
- IGW poorly resolved, and not parameterized.

Baldwin et al, 2001
Requirement for QBO Forcing

• QBO Acceleration rate:
 - 50 m/s/14 months ~ 10^{-6} m/s^2
 - \(Q \frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial \tau}{\partial z} \approx -\frac{1}{\rho} \frac{\Delta \tau}{\Delta z} \)
 \(\Delta \tau \sim 10^{-3} \text{ Pa} \) (\(\rho_{\text{strat}} \sim 0.1 \text{kg/m}^3 \), \(\Delta z \sim 10 \text{km} \))

• For GW with such momentum flux to break in the stratosphere, the horizontal wavelength is ~1000 km according to linear saturation theory.

• Also possible: intermittent mesoscale GW with large momentum flux (e.g. \(t \sim 10^{-2} \text{ Pa} \), occurring 10% of the time). Not considered in this study.
Parameterizing Inertia-GW

- Similar to Lindzen (1981), though considering Coriolis effect (Xue et al., 2011).

\[
\frac{\partial u}{\partial t} = - \frac{1}{\rho_0} \frac{\partial \tau^*}{\partial z} = \frac{k[(c-u)^2-f^2/k^2]^{1/2}(c-u)^2}{2NH}
\]

- A discrete spectrum of IGWs is launched at each grid point from tropopause between 30S-30N. Uniform longitudinal distribution.

Zonal Wind Spectrum: Equator

U spectral amplitude (m/s) at the Equator

Wavelet power: zonal mean U, equator 10 hPa

Wavelet power: zonal mean U, equator 10 hPa
Composite Zonal Mean U: Equator

- 10 hPa: Westerly phase 18 mon. in WACCM, compared with 10 mon. in reanalysis.
- Westerly phase becomes shorter at lower altitude, opposite to the reanalysis.
- Westerly phase stops at 40 hPa.
Temperature Spectrum: Equator

Wavelet power: zonal mean T, equator 10 hPa

Wavelet power: total O3, equator
DJF Composite Diffs: W-E

Holton and Tan, 1980
Planetary waves (1-2): W-E

Holton and Tan, 1980
DJF Composite T Diff: W-E
Correlation Between Z/Z_1 with $U(43\text{hPa})$
Surface Pressure: W-E

Holton and Tan, 1980
Summary

• The new IGW parameterization scheme produce QBO-like oscillations in CESM/WACCM4 simulation (1850-2004).
• Stratosphere zonal mean zonal wind around equator oscillates with a mean period of 28 months. Wavelet analysis shows that the period and strength of the oscillation vary with time.
• Lengths of QBO W/E phase differ from observations.
• Mesosphere QBO weak compared with observations.
• Holton-Tan relation reproduced: W phase -> lower geopotential/temperature, stronger jet at high latitudes of winter hemisphere.
• Surface pressure change consistent with reanalysis. W phase -> low pressure anomaly over winter pole and high pressure anomaly over northern Pacific (50N) and Atlantic (40N) oceans.