Multi-decadal variability of Arctic climate in CCSM3 mid-Cretaceous simulations

J. Zhou and C. J. Poulsen
Department of Geological Sciences, University of Michigan

Acknowledgement: Nan Rosenbloom, Christine Shields, Esther Brady and Bruce Briegleb
Recent Arctic variability and the potential causes

The warming in the early 20th is likely due to natural variability, and linked to sea-ice variability.

Bengtsson et al., 2004

Induced by modifications in the meridional heat transport between the Arctic and North Atlantic via:

- Atmospheric variability (NAO/AO)
- Wind-driven Arctic Ocean Oscillatory (AOO)
- Variability of the meridional overturning circulation (MOC)

Goosse and Holland, 2005
Methodology

Model:
T31x3 CCSM3 with dynamic vegetation model

Experiments:
- Mid-Cretaceous paleogeography and bathymetry.
- 99% of modern solar constant
- Four experiments initialized from a previous Cretaceous simulation.

Source: Scotese PALEOMAP project
Simulated mean climate

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Atm. CO$_2$</th>
<th>Vegetation</th>
<th>Global SAT</th>
<th>MOC</th>
<th>70-90 °N SAT</th>
<th>Sea ice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ppmv)</td>
<td>(°C)</td>
<td>(Sv)</td>
<td></td>
<td>(°C)</td>
<td>(106km3)</td>
</tr>
<tr>
<td>1xv</td>
<td>280</td>
<td>13.6</td>
<td>21.9</td>
<td></td>
<td>-17.6</td>
<td>15.7</td>
</tr>
<tr>
<td>10xn</td>
<td>2800</td>
<td>23.1</td>
<td>20.4</td>
<td></td>
<td>4.9</td>
<td>0.1</td>
</tr>
<tr>
<td>10xv</td>
<td>2800</td>
<td>24.0</td>
<td>18.2</td>
<td></td>
<td>7.0</td>
<td>0.06</td>
</tr>
<tr>
<td>16xv</td>
<td>4480</td>
<td>25.6</td>
<td>9.6</td>
<td></td>
<td>8.4</td>
<td>0.01</td>
</tr>
</tbody>
</table>

[Maps showing climate data for 1xv and 10xv conditions]
Time series of Arctic SAT
Variability of Arctic SAT
Simulated Arctic variability: spectrum of SAT
The role of meridional heat transport

- The driving role of oceanic heat transport is persistent.
- The leading role of atmospheric heat transport decreases with warmer climate.
Variability of MOC
The role of MOC

MOC variation is a response rather than a driver of the anomalous OHT except in the 16xv experiment.
Atmospheric variability: PSL EOF1

T41 modern CCSM3 simulation
Yeager et al., 2006
Atmospheric circulation triggers changes in sea-ice, which influences oceanic heat transport.
The role of BSF
Positive cloud feedbacks in the ice-free simulations.
The multi-decadal Arctic variability varies with mean climate in terms of regularity and magnitude.

Anomalous oceanic heat transport acts as a driver for the Arctic multi-decadal variability, which is due to atmosphere-sea ice interaction in the 1xv experiment, and due to changes in BSF in the ice-free 10xn and 10xv experiment. In contrast, MOC variation can be only considered a response to the Arctic change.

Anomalous atmospheric circulation leads to the Arctic multi-decadal variability when sea-ice feedback is significant.

Cloud feedbacks tend to damp the variability in the 1xv experiment, yet to reinforce the variability in the rest ice-free warm simulations.
Examples of warming events
Methods

- Remove least-squared quadratic trend
- Hanning-window with a bandwidth of 11 applied prior to spectrum
- 10-year running mean is applied prior to regression/correlation
Warming events
CRF