Arctic Ocean simulation in the CCSM4

Alexandra Jahn
National Center for Atmospheric Sciences,
Boulder, USA

Objective and Method

Objective:
• 1) Establish how well the CCSM4 simulates the late 20th century Arctic Ocean properties
• 2) Investigate how the key parameters of the Arctic Ocean change in the 21st century

Method:
• Use the six available CCSM4 ensemble simulation for 1981-2005 and the 21st century, and available observations
Beaufort Gyre in CCSM4

Weak Beaufort Gyre

Strong Beaufort Gyre

Average Beaufort Gyre
SLP bias

de Boer et al. (2011)
Arctic FW column [m]

PHC climatology

CCSM4

Jahn et al., 2011
Arctic FW budget

Overall good agreement.

Main biases:
1. Too much FW input
2. FW export east of Greenland split between Fram Strait and Barents Sea
Volume and AW heat fluxes: Fram Strait

Fram Strait

Barents Sea opening

Jahn et al., 2011
Too deep and warm AW temperature maximum
Not enough cooling below 500m
Surface waters too salty

Jahn et al., 2011
Why is the deep Arctic Ocean so warm?
Atlantic water

Upper Atlantic water depth

Atlantic water core depth

Lower Atlantic water depth
Upper Atlantic water depth

Observations (PHC2) vs CCSM4

Jahn et al., 2011
Atlantic water core depth

Jahn et al., 2011
Temperature at Atlantic water core depth

- AW core temperature too warm (by ~0.5°C)
- AW circulation shows many of the observed features

Jahn et al., 2011
21st Century
Warming of AW layer is due to increased temperature of inflowing AW
Surface freshening is due to increased FW input by rivers and more sea-ice melt within the Arctic Ocean

Vavrus et al., 2011
Increasing freshwater export increases over the 21st century, with a shift from solid to liquid freshwater export

Vavrus et al., 2011
Impact on deep convection?

Late 20th century

Late 21st century

Vavrus et al., 2011
20th century:

- The Beaufort Gyre is too weak due to a large SLP bias in all seasons.
- Arctic FW budget is in overall good agreement with observations.
- Net heat flux into Arctic Ocean about right, but too much enters through the BSO.
- The upper Atlantic water depth (defined as the 0°C isotherm) is well simulated compared to the PHC2 temperature data, except in the Beaufort Gyre region where it is too shallow by 25-100 m compared to PHC2.
- The Atlantic water core depth is too deep compared to PHC2 (by about 500m) and AW fills the entire deep Arctic Ocean.
- Temperatures at the Atlantic water core depth are overall too warm, but the circulation pattern agrees with observations.
Summary: 21st century

\textbf{21st century:}
- The AW layer warms due to increased temperatures of the inflowing water
- The surface freshens due to more runoff and more sea-ice melt in the Arctic Ocean
- The FW export from the Arctic shifts to predominantly liquid FW, which contributes to a decrease of the deep convection in the Labrador Sea at the end of the 21st century
Questions?

Contact: ajahn@ucar.edu

NCAR is sponsored by the National Science Foundation
Fig. 15: Index of meridional overturning circulation (MOC) in the Atlantic taken as the largest value of meridional overturning streamfunction below 500 m depth in Sverdrups (10^6 m3s$^{-1}$). Solid lines are ensemble averages for 20th and 21st centuries with shading indicating the range of the ensemble. After 2100, solid lines indicate single members.