Quantifying the Uncertainty in Ice Sheet Model Parameters via Model Calibration

Calibration of the Community Ice Sheet Model

M. T. Pratola1, S. Price2, J. Gattiker1 and D. Higdon1

1Statistical Sciences Group, Los Alamos National Laboratory

2COSIM, Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory

June 22, 2011
Outline

- Introduction: Community Ice Sheet Model (CISM)
- Some idealized experiments using CISM
- A Statistical Framework for Combining CISM with field data
- Early results, future directions
Historically, ice sheets thought to respond slowly to short-term climate change.

However, recent observations indicate significant ice sheet volume changes as a result of decadal-scale climate forcing.

Potential changes in discharge from Greenland and/or Antarctic ice sheets are the largest unknown w.r.t. future sea-level rise.

CISM describes ice sheet evolution (velocities, thickness, temperature, etc.) assuming appropriate boundary and initial conditions and atmospheric and oceanic forcing (e.g., from CESM).
Goals

- Our goal is to leverage a statistical model calibration framework to better understand and quantify uncertainties in ice-sheet evolution as simulated by CISM.
- Here, we investigate idealized scenarios with uncertainties in:
 - Flow law exponent, n
 - Flow law rate factor activation energy, Q
 - Constant (in x,t) ice-shelf basal melt rate, m
Experimental Setup

- Modified version of the standard “confined shelf” test case:
 - isothermal, rectangular shelf of uniform thickness
 - confined at upstream and lateral margins (zero flux bc)
 - open to the ocean at downstream margin (specified stress bc)

- Constant and steady surface mass balance applied for experiments where n and Q vary

- Constant n, Q, and surface accumulation for experiments where m varied

- All experiments evolve to approximate SS from $t=0$ to $t=1000$ yrs
CISM Confined Shelf Example
Represent CISM as $\eta(\theta)$ where θ is some parameter vector of interest

Ensemble of CISM runs \(\{ Y_i^c = \eta(\theta_i) \} \) at different θ_i's to get ensemble of outputs

Choose a “true” value θ_0 to simulate a field observation. The observation, Y^f, is constructed as $\eta(\theta_0) +$ error.

- Experiment 1: $\theta = n$, select 7 settings for $n \in [1.5, 4.0]$ for model runs. $n_0 = ?$
- Experiment 2: $\theta = (n, Q)$, select 8 settings for $n, Q \in ([1.5, 4.0], [4e4, 8e4])$. $(n_0, Q_0) = ?$
- Experiment 3: $\theta = m$, select 7 settings for $m \in [1.0, 5.0]$. $m_0 = ?$
A Statistical Framework for Uncertainty Quantification

- Statistical computer model calibration experiments - e.g. Kennedy & O’Hagan (2001), Higdon et al. (2004), amongst others.

- Useful in situations where
 - model costly to run
 - combine field observations and model output
 - quantify uncertainty in parameters and model predictions
Statistical Calibration Model

Model: \(y^f(x) = \eta(x, \theta_0) + \epsilon(x) \); \(y^c_i(x, \theta_i) = \eta(x, \theta_i) \)

- We have computer model outputs
 \[Y^c = (Y^c_1^T, \ldots, Y^c_N^T)^T \]

 and field observations
 \[Y^f = (y^f(x_1), \ldots, y^f(x_M))^T. \]

- Then a joint model for all the data is:
 \[
 \begin{pmatrix}
 Y^f \\
 Y^c
 \end{pmatrix}
 \sim
 \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu \\
 \mu
 \end{pmatrix},
 \sigma^2
 \begin{bmatrix}
 R^f & R^{fc} \\
 R^{fc} & R^c
 \end{bmatrix}
 +
 \begin{bmatrix}
 \sigma^2 \epsilon I_n & 0 \\
 0 & 0
 \end{bmatrix}
 \right),
 \]

 \[\text{corr}(y^c_k(x_i, \theta_k), y^f(x_j, \theta_0)) = e^{-\sum_{p=1}^{P} \gamma_p (x_{ip} - x_{jp})^2 - \sum_{q=1}^{Q} \phi_q (\theta_{kq} - \theta_{0q})^2} \]
Posterior of parameters is
$$\theta_0, \mu, \sigma^2, \sigma^2_\epsilon, \gamma, \phi | \mathbf{Y}^f, \mathbf{Y}^c \propto L(\mathbf{Y}^f, \mathbf{Y}^c | \cdot) \pi(\theta_0, \mu, \sigma^2, \sigma^2_\epsilon, \gamma, \phi)$$
which we can sample using MCMC to get our parameter estimates.

Can also sample the posterior predictive distribution,
$$y^c(x, \theta_0) | \mathbf{Y}^f, \mathbf{Y}^c$$ for making predictive inference.

In particular,
$$E[y^c(x, \theta_0) | \mathbf{Y}^f, \mathbf{Y}^c, \cdot] = \mathbf{w}^T \left(\begin{pmatrix} \mathbf{Y}^f \\ \mathbf{Y}^c \end{pmatrix} - \mu \right)$$

where $$\mathbf{w}^T = \mathbf{c}^T \Sigma^{-1}$$, with $$\Sigma$$ as before, and
$$\mathbf{c}^T = \left[\text{cov} \left(y^c(x, \theta_0), y^f(x_1, \theta_0) \right), \ldots \right]$$.
The Idea (in pictures)
Results: Experiment 1 ($n_0 = 3$)
Results: Experiment 2 \((n_0 = 3, Q_0 = 60 \times 10^3)\)
Results: Experiment 3 \((m_0 = 2.72)\)
Calibrated Prediction (eg: melt experiment)
Conclusions & Future Directions

- Outlined a typical approach to statistical uncertainty quantification in model calibration
- Method gave reasonable results, but improvements needed to analyze simulated examples that are closer to the real-world problem
- Scientific goal is to perform uncertainty quantification for an ice-shelf where, for example, n, Q and m (or other parameters of interest) are unknown (we’re not there yet).