The influence of new sea ice radiation physics and associated capabilities in CCSM4

Marika M. Holland, David A. Bailey, Bruce P. Briegleb, Bonnie Light
New Solar Radiation parameterization introduced in 2007

Better physics:

• makes use of inherent optical properties to define scattering and absorption snow, sea ice and included absorbers

More flexible

• Explicitly allows for included absorbers (black carbon, dust, algae, ponds, etc.)
New radiative transfer allows for (requires) melt pond parameterization

- Only influences radiation
- Pond volume depends on surface meltwater, assuming a runoff fraction
New radiative transfer allows for:

Included absorbers

- Aerosol deposition and cycling now included.
- Account for black carbon and dust which are deposited and modified by melt and transport.
What is influence of new SW capabilities on CCSM4 Polar Climate?

<table>
<thead>
<tr>
<th>Model Simulation</th>
<th>CO2 level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1xCO2</td>
</tr>
<tr>
<td>No Aerosols</td>
<td>1xCO2</td>
</tr>
<tr>
<td>No Ponds or Aerosols</td>
<td>1XCO2</td>
</tr>
<tr>
<td>Control</td>
<td>2xCO2</td>
</tr>
<tr>
<td>No Aerosols</td>
<td>2xCO2</td>
</tr>
<tr>
<td>No Ponds or Aerosols</td>
<td>2XCO2</td>
</tr>
</tbody>
</table>

SOM integrations at 2°/gx1, ~60 Years in length
Control Integrations (2$^\circ$/gx1 SOM)

Annual Mean Ice Thickness

2XCO2

1XCO2

JFM Ice Concentration

2XCO2

1XCO2
Control Integration - Pond Simulation

1X CO2 Run

July

August

2X CO2 Run

July

August
Assessing radiative impacts of ponds/aerosols

• New diagnostics available to quantify radiative impacts

• Extra DE radiation computations performed which excludes ponds or excludes aerosols (for each category and surface type, so increases computational expense)

• New history file variables saved (*_noaero and *_nopond variables) from these computations
Radiative impact of ponds in control runs

Ponds result in 5-10 W/m² increase in SW absorption over Arctic basin for July

Pond impact is larger in 2XCO₂ simulation.
- More surface melting results in increased pond volume

Difference in July Ice Albedo due to Ponds
For 2xCO₂ run
Radiative impact of aerosols (in control runs)

Using 1850 Aerosol deposition,
- albedo impact is small
- <1 W/m² increase in absorbed SW

Aerosol impact is larger in 1XCO₂ simulation.
- Less surface melt results in less meltwater scavenging of aerosols.
Influence of ponds on simulated sea ice

Control Runs (2^0/9x1 SOM)

Model Runs
No Ponds & Aerosol Run Minus No Aerosol Run

Annual Ice Thickness

(1XCO2) (2XCO2)
Influence of aerosols on simulated sea ice

Annual Ice Thickness

Control Runs (2°/g×1 SOM)

Model Runs No Aerosol Run Minus Control
Conclusions

• We are assessing the influence of new SW and its associated capabilities in CCSM4 runs
• Ponds account for ~5-10 W/m2 increased SW absorption in control runs
• Aerosols account for <1 W/m2 increased SW absorption
• Influence is larger when coupled feedbacks are allowed
• Since influence varies depending on climate state, the pond/aerosol impact could affect the albedo feedback
Influence of ponds on simulated sea ice

(1XCO2) (2XCO2)

JAS Ice Concentration

Control Runs
(2°/g×1 SOM)

Model Runs
No Ponds & Aerosol Run
Minus No Aerosol Run
Influence of aerosols on simulated sea ice

JAS Ice Concentration

Control Runs
(2°/g×1 SOM)

Model Runs
No Aerosol Run Minus Control
Implications for albedo feedback