Diagnosing Recent Changes in Cryosphere Radiative Forcing

Mark Flanner,
Karen Shell, Michael Barlage, Mark Tschudi, and Don Perovich

June 29, 2010
CESM Land Model Working Group Session
Motivation

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*
Motivation

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance
Motivation

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*.
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance.
- We now have 30 years of continuous remote sensing observations with which to diagnose cryosphere radiative forcing.
Motivation

- Model cloud processes and climate influence are often diagnosed with *cloud radiative forcing*.
- A similar diagnostic for model cryosphere processes would enable isolation of the influence of snow/ice processes on surface albedo and TOA energy balance.
- We now have 30 years of continuous remote sensing observations with which to diagnose cryosphere radiative forcing.
- Recent reductions in seasonal snow cover (spring) and sea-ice (autumn) are evident. What is the radiative impact of these changes?
Definition

- **Cryosphere radiative forcing (CrRF):** the instantaneous perturbation to Earth’s TOA energy balance induced by the presence of all cryospheric components
Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth’s TOA energy balance induced by the presence of all cryospheric components.

Here: consider only the solar component of CrRF.
Definition

- **Cryosphere radiative forcing** (CrRF): the instantaneous perturbation to Earth’s TOA energy balance induced by the presence of all cryospheric components

 Here: consider only the solar component of CrRF.
 (Longwave component could be important where snow emissivity differs from ice-free state)
Definition

- **Cryosphere radiative forcing (CrRF):** the instantaneous perturbation to Earth’s TOA energy balance induced by the presence of all cryospheric components.

- Here: consider only the solar component of CrRF. (Longwave component could be important where snow emissivity differs from ice-free state.)

- We derive CrRF over a region R from:

\[
\text{CrRF}(t, R) = \frac{1}{A} \int_R S_x(t, r) \left[\frac{\partial \alpha}{\partial S_x}(t, r) \frac{\partial F}{\partial \alpha}(t, r) \right] dA(r) \quad [\text{W m}^{-2}]
\]

(1)
Definition

- **Cryosphere radiative forcing** (CrRF): the instantaneous perturbation to Earth’s TOA energy balance induced by the presence of all cryospheric components.

- Here: consider only the solar component of CrRF. (Longwave component could be important where snow emissivity differs from ice-free state.)

- We derive CrRF over a region R from:

\[
\text{CrRF}(t, R) = \frac{1}{A} \int_R S_x(t, r) \frac{\partial \alpha}{\partial S_x}(t, r) \frac{\partial F}{\partial \alpha}(t, r) \, dA(r) \quad [\text{W m}^{-2}]
\]

(1)

- We partition CrRF into contributions from:
 - seasonal snow cover
 - sea-ice
Methods and Data

Methods and Data

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (Robinson and Frei, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (Cavalieri et al., 2008, NSIDC)
NOAA/Rutgers binary snow cover product, derived from AVHRR data (*Robinson and Frei*, 2000), continuous from 1972

Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (*Wang and Key*, 2005), and land-class-mean albedo.

Characterize uncertainty with albedo variability by land-class
Methods and Data

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (Robinson and Frei, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (Cavalieri et al., 2008, NSIDC)
- Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (Wang and Key, 2005), and land-class-mean albedo.
- Characterize uncertainty with albedo variability by land-class
- Sea-ice albedo partitioned into first-year and multi-year ice albedo, determined from Perovich et al. (2002)
Methods and Data

- NOAA/Rutgers binary snow cover product, derived from AVHRR data (Robinson and Frei, 2000), continuous from 1972
- 1979–2008 sea-ice concentration derived from microwave remote sensing (Cavalieri et al., 2008, NSIDC)
- Snow-covered albedo: 2000-2008 monthly-resolved MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover. Data are filled with annual-mean snow-covered albedo, APP-x surface albedo (Wang and Key, 2005), and land-class-mean albedo.
- Characterize uncertainty with albedo variability by land-class
- Sea-ice albedo partitioned into first-year and multi-year ice albedo, determined from Perovich et al. (2002)
- Radiative kernels derived from CAM and GFDL models (Shell et al., 2008; Soden et al., 2008) and remote sensing cloud products (ISCCP, APP-x)
Snow-covered / snow-free albedo contrast

Large spatial variability
- Reduced snow impact over mature forests
Snow-covered / snow-free albedo contrast

Large spatial variability
- Reduced snow impact over mature forests
- Largest variability in albedo contrast over open shrublands, grasslands, and sparsely vegetated terrain
Snow-covered / snow-free albedo contrast

Large spatial variability
- Reduced snow impact over mature forests
- Largest variability in albedo contrast over open shrublands, grasslands, and sparsely vegetated terrain
- NOAA/Rutgers “snow-covered” surfaces can be up to 50% snow-free
Mean CrRF

- Annual-mean Northern Hemisphere CrRF of land snow:
 $-2.0 \pm 0.6 \text{ W m}^{-2}$
Seasonal cycle of CrRF

Peak land-snow CrRF season: March–May
Seasonal cycle of CrRF

- **Peak land-snow CrRF season:** March–May
- **In May,** the Northern Hemisphere reflects an additional ~ 9 W m$^{-2}$ to space because of the cryosphere
1979–2008 evolution of CrRF

- 30-year trends are determined from anomalies in CrRF
1979–2008 evolution of CrRF

30-year trends are determined from anomalies in CrRF

2007–2008 land-based snow had the smallest radiative impact on record, although sea-ice changes were even more anomalous (relatively)
1979–2008 change in CrRF

- Mean CrRF change in CrRF: +0.22 ± 0.08 W m\(^{-2}\)
1979–2008 change in CrRF

- 30-year change in land snow CrRF: $+0.22 \pm 0.08 \text{ W m}^{-2}$
- Large spring increase, small autumn effect from *increased* snow
1979–2008 change in CrRF

- 30-year change in land snow CrRF: $+0.22 \pm 0.08 \text{ W m}^{-2}$
- Large spring increase, small autumn effect from *increased* snow
- Mountain snow changes should be interpreted with caution
Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change ($p = 0.05$)
- Land-snow CrRF changes are significant during March–August
Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change ($p = 0.05$)
- Land-snow CrRF changes are significant during March–August
- Peak change during June:

![Graph showing seasonal cycle of change in CrRF]
Seasonal cycle of change in CrRF

- 'X' indicates statistically-significant change ($p = 0.05$)
- Land-snow CrRF changes are significant during March–August
- Peak change during June: influenced by Himalaya, Tien Shan snow cover loss (again, caution)
Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m\(^{-2}\)) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

<table>
<thead>
<tr>
<th>Kernel ((\partial F/\partial \alpha))</th>
<th>Low</th>
<th>Central</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM</td>
<td>+0.26 (42)</td>
<td>+0.38 (50)</td>
<td>+0.48 (53)</td>
</tr>
<tr>
<td>GFDL</td>
<td>+0.29 (41)</td>
<td>+0.40 (49)</td>
<td>+0.49 (52)</td>
</tr>
<tr>
<td>ISCCP</td>
<td>+0.40 (48)</td>
<td>+0.57 (54)</td>
<td>+0.72 (56)</td>
</tr>
<tr>
<td>APP-x</td>
<td>+0.31 (41)</td>
<td>+0.48 (49)</td>
<td>+0.59 (49)</td>
</tr>
<tr>
<td>CAM clear-sky</td>
<td>+0.58 (38)</td>
<td>+0.82 (45)</td>
<td>+1.00 (48)</td>
</tr>
</tbody>
</table>

CrRF changes are greater with actual, annually-varying cloud conditions (ISCCP and APP-x) than with model-derived kernels. Clouds mask about half of the radiative impact of snow and ice.
Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m\(^{-2}\)) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

<table>
<thead>
<tr>
<th>Kernel ((\partial F/\partial \alpha))</th>
<th>Low</th>
<th>Central</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM</td>
<td>+0.26 (42)</td>
<td>+0.38 (50)</td>
<td>+0.48 (53)</td>
</tr>
<tr>
<td>GFDL</td>
<td>+0.29 (41)</td>
<td>+0.40 (49)</td>
<td>+0.49 (52)</td>
</tr>
<tr>
<td>ISCCP</td>
<td>+0.40 (48)</td>
<td>+0.57 (54)</td>
<td>+0.72 (56)</td>
</tr>
<tr>
<td>APP-x</td>
<td>+0.31 (41)</td>
<td>+0.48 (49)</td>
<td>+0.59 (49)</td>
</tr>
<tr>
<td>CAM clear-sky</td>
<td>+0.58 (38)</td>
<td>+0.82 (45)</td>
<td>+1.00 (48)</td>
</tr>
</tbody>
</table>

- CrRF changes are greater with actual, annually-varying cloud conditions (ISCCP and APP-x) than with model-derived kernels.
Change in CrRF produced with different methods

Table: Change in Northern Hemisphere CrRF (W m$^{-2}$) during 1979–2008. Numbers in parenthesis indicate the percent of change due to land-based snow.

<table>
<thead>
<tr>
<th>Kernel ((\partial F/\partial \alpha))</th>
<th>Low</th>
<th>Central</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM</td>
<td>+0.26 (42)</td>
<td>+0.38 (50)</td>
<td>+0.48 (53)</td>
</tr>
<tr>
<td>GFDL</td>
<td>+0.29 (41)</td>
<td>+0.40 (49)</td>
<td>+0.49 (52)</td>
</tr>
<tr>
<td>ISCCP</td>
<td>+0.40 (48)</td>
<td>+0.57 (54)</td>
<td>+0.72 (56)</td>
</tr>
<tr>
<td>APP-x</td>
<td>+0.31 (41)</td>
<td>+0.48 (49)</td>
<td>+0.59 (49)</td>
</tr>
<tr>
<td>CAM clear-sky</td>
<td>+0.58 (38)</td>
<td>+0.82 (45)</td>
<td>+1.00 (48)</td>
</tr>
</tbody>
</table>

- CrRF changes are greater with actual, annually-varying cloud conditions (ISCCP and APP-x) than with model-derived kernels.
- Clouds mask about half of the radiative impact of snow and ice.
Conclusions and future directions

- 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about $0.62 \pm 0.1 \text{ W m}^{-2} \text{ K}^{-1}$
Conclusions and future directions

- 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about 0.62 ± 0.1 W m$^{-2}$ K$^{-1}$

- Next step: Compare observations with CrRF (and ΔCrRF) produced by CLM, and identify physical/biophysical snow processes that can be improved
Conclusions and future directions

- 30-year changes in snow and sea-ice imply Northern Hemisphere cryosphere albedo feedback is currently about $0.62 \pm 0.1 \text{ W m}^{-2} \text{ K}^{-1}$.

- Next step: Compare observations with CrRF (and ΔCrRF) produced by CLM, and identify physical/biophysical snow processes that can be improved.

- Model CrRF is influenced by:
 - Surface downwelling insolation (cloudiness) (Qian et al., 2006)
 - Snow cover fraction (Niu and Yang, 2007)
 - Snow burial fraction (Wang and Zeng, 2009)
 - Snow metamorphosis (Flanner and Zender, 2006)
 - Impurity-induced snow darkening