Berkeley-ISICLES (BISICLES): High Performance Adaptive Algorithms For Ice Sheet Modeling

Dan Martin
Lawrence Berkeley National Laboratory

June 30, 2010
BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines?)
- Large regions where such high resolution is unnecessary (e.g. East Antarctica)
- Problem is well-suited for adaptive mesh refinement (AMR)
- Want good parallel efficiency
- Need good solver performance

Much higher resolution (1 km versus 5 km) required in regions of high velocity (yellow → green).

[Rignot & Thomas, 2002]
Develop an efficient parallel implementation of Glimmer-CISM by

- incorporating structured-grid AMR using the Chombo framework to increase resolution in regions where changes are more rapid,
- improving performance and convergence of multigrid/multilevel solvers, and
- deploying auto-tuning techniques to improve performance of key computational kernels.
Block-Structured Local Refinement

- Refined regions are organized into rectangular patches.

- Refinement in time as well as in space for time-dependent problems.

 Algorithmic advantages:

 - Build on mature structured-grid discretization methods.

 - Low overhead due to irregular data structures, relative to single structured-grid algorithm.
Chombo: AMR Software Framework

- **Goal:** to support a wide variety of applications that use AMR by means of a common software framework.

- **Approach:**
 - Mixed-language programming: C++ for high-level abstractions, Fortran for calculations on rectangular patches.
 - Bulk-synchronous SPMD model based on flat MPI parallelism. Global metadata replicated for all processors.
 - Re-useable components, based on mapping of mathematical abstractions to classes. Components are assembled in different ways to implement different applications capabilities.
 - Layered architecture, that hides different levels of detail behind interfaces.
 - High performance: models developed in Chombo are “born parallel”. Scalability to 10K processors is routine, 100K processors is under active development.

- Supported as part of the SciDAC APDEC CET.
BISICLES Project Outline

- Joint work involving LBNL and LANL
 - LBNL: Esmond Ng (PI), Dan Martin (AMR), Woo-Sun Yang, Sam Williams (Autotuning), Sherri Li (Linear Solvers)
 - LANL: Bill Lipscomb (co-PI), Doug Ranken (software support)
- Collaboration with Tony Payne and Stephen Cornford (Univ of Bristol, UK)
- Build AMR implementation of Glimmer-CISM
- Extensions to existing Chombo infrastructure added as needed
- Autotuning techniques deployed as components are developed
- Multigrid/multilevel linear solver improvements
- Coupling with CCSM using existing Glimmer-CISM interface and by developing new interfaces as needed
Models and Discretizations

- Baseline model is the one used in Glimmer-CISM:
 - Logically-rectangular grid, obtained from a time-dependent uniform mapping.
 - 2D equation for ice thickness, coupled with steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
 - Advection-diffusion equation for temperature.

- Use of Finite-volume discretizations (vs. Finite-element discretizations) simplifies implementation of local refinement.

- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

\[
\frac{\partial H}{\partial t} = b - \nabla \cdot H \mathbf{u} \\
2 \frac{\partial}{\partial x} f \left[2 \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial y} f \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right] + \frac{\partial}{\partial z} f \frac{\partial u}{\partial z} = - \rho g \frac{\partial s}{\partial x} \\
2 \frac{\partial}{\partial y} f \left[2 \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial x} f \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] + \frac{\partial}{\partial z} f \frac{\partial v}{\partial z} = - \rho g \frac{\partial s}{\partial y} \\
\frac{\partial T}{\partial t} = \frac{k}{\rho c} \nabla^2 T - \mathbf{u} \cdot \nabla T + \frac{\Phi}{\rho c} - w \frac{\partial T}{\partial z}
\]
BISICLES Plan and Progress

- Developed algorithm and software design specification
- 2D vertically-integrated AMR Shallow-shelf approximation code
 - horizontal velocity nonlinear elliptic solver
 - ice thickness equation (advection)
 - Improved constitutive relations (L1L2) (in progress)
 - temperature advection
- 3D AMR higher-order model solver
 - horizontal velocity nonlinear elliptic solver (in progress)
 - (2D) ice thickness equation
 - temperature advection and vertical diffusion
- Extensions to existing Chombo infrastructure added as needed
- Autotuning techniques deployed as components are developed
- Multigrid/multilevel linear solver improvements (beginning)
- Coupling with CCSM using existing Glimmer-CISM interface and by developing new interfaces as needed (in progress)
Ice-stream Simulation [based on Pattyn et al (2008)]:

- High resolution is required to accurately resolve the ice stream.
- AMR simulation allows high resolution around the ice stream at a fraction of the cost of a uniformly refined mesh.
Grounding-line Simulation [Vieli and Payne (2005), Gladstone et al (2010)]:

- Demonstration that resolution is important (data provided by Stephen Cornford (Bristol)).
- AMR simulation captures qualitative behavior of uniform fine-mesh simulations.

BISICLES Results

Figure 1:

- **Graph:**
 - **Y-axis:** Grounding line position (km)
 - **X-axis:** Time (ka)
 - **Legend:**
 - Base resolution (km):
 - 31
 - 16
 - 7.8
 - 3.9
 - 2
 - 0
 - **Lines:**
 - a = 0.3 ma^{-1}
 - a = 0.5 ma^{-1}
 - a = 0.3 ma^{-1}

Figure 2:

- **Graph:**
 - **X-axis:** Distance from ice divide (km)
 - **Y-axis:**
 - Ice surface elevation (km)
 - Ice base elevation (km)
 - Bedrock elevation (km)
 - **Legend:**
 - X-velocity (km/a)
 - **Lines:**
 - Grounding line
Initial tests show good strong scaling to at least 64 processors for nonlinear velocity solve (L1L2 approximation):
BISICLES - Next steps

- Improved Nonlinear solver (Picard->JFNK)
- Semi-implicit time-discretization?
- Non-isothermal
- Finish coupling with existing Glimmer-CISM code (enables use of existing CCSM coupler)
- Begin work on full 3D velocity solve (Blatter-Pattyn model)
- Refinement in time?