Thoughts on connecting geophysical observations and dynamic ice sheet models — surface elevation, bed topography, roughness and turbulence

Ute C. Herzfeld, Bruce Wallin

Cooperative Institute for Research in Environmental Sciences
Department of Electrical, Computer and Energy Engineering, and
Department of Applied Mathematics
University of Colorado at Boulder

herzfeld@tryfan.colorado.edu
Thanks to my collaborators and students ...

IceBridge: William Krabill, Serdar Manizade (both NASA Goddard Space Flight Center) and collaborators;

ICESat: Jay Zwally, John DiMarzio (both NASA Goddard Space Flight Center) and ICESat science team;

CReSIS: Prasad Gogineni, Carl Leuschen, Joel Plummer (all Center for Remote Sensing of Ice Sheets);

SeaRISE: Robert Bindschadler, Sophie Nowicki (NASA Goddard Space Flight Center), Edward Bueler, Andy Aschwander (both University of Alaska, Fairbanks), Diandong Ren (University of Texas, Austin), Jesse Johnson and Glen Granzow (both University of Montana, Missoula);

MICROTOP: Helmut Mayer, Oliver Zahner, Matthias Mimler, Tim Erbrecht, Christoph Overbeck, Sandra Boehm, Benno Rothstein, Malin Auras, Renate Keller, Ralf Stosius (all Geomathematik, Univ Trier), Wolfgang Feller (Techn Abt, Univ Trier);

Koni Steffen, Roger Barry (CIRES), Jim Maslanik (CCAR), David Korn (NSIDC), Steve Sucht, Danielle Lirette, Patrick McBride, Scott Williams, Chris Higginson, Michael Matassa (all CU Boulder and CIRES), Nel Caine (Geography, CU Boulder), Michael Kuhn (Inst f Meteorologie und Geophysik, ...)
... and for support through

- NASA Cryospheric Sciences
- NSF Hydrological Sciences
- Deutsche Forschungsgemeinschaft (DFG), Antarctic and Arctic Research Program
- University of Colorado UROP Program
Satellite Altimetry

- Geophysical measurement of surface elevation from satellite, using active microwave radar technology or laser technology

- Satellites with radar altimeters
 1. SEASAT (1978)
 4. ERS-2 (since 1995)
 5. TOPEX/POSEIDON
 6. JASON-1/2
 7. ENVISAT (since 2002)
 8. CryoSat (since Feb 2010)

- Satellites with laser altimeters
 1. ICESat: GLAS (2003-2009)
 2. ICESat-2 (launch 2015)
Survey campaigns and satellite missions → tiers of observations

SCALE
Topography and Flowlines of Lambert Glacier/Amery Ice Shelf System

Elevation:
1997 ERS-2 data (1 Aug–31 Oct 1997), geostatistical analysis (Herzfeld et al.)

Surface Structure:
1997 RADARSAT data (RADARMAP 1st Antarctic mission, 2 Sept- 20 Oct 1997; Mosaic Jezek et al., 125m pixels)

Data integration and geo-referencing:
Stosius and Herzfeld
Spatial surface roughness

- a derivative of (micro)topography
- morphology at large scale
- interaction with bed topography
- ice flow and turbulence

→ effects on sea-level rise?
Bering Glacier, 1994, mature surge stage, Khittrov Hills in background
Jakobshavn Isbræ Drainage Basin – Spring Ice Surface
Jakobshavn Isbræ Drainage Basin – Summer Ice Surface
Calving Front of Jakobshavns Isbræ on 16 July 2005
How do we measure surface roughness? — The GRS!
Dynamic Provinces in Jakobshavns Isbræ from ICESat (GLAS, 2003-2009) and IceBridge (ATM, 2009) Data
Jakobshavn Isbrae - Roughness measures

GLAS L3C 05/2005 left to right: Δpeak(μs), pond
ASTER 3B 05-2003 Background
Jakobshavn Isbrae - Roughness measures

GLAS I 31107 left to right: Δpeak(μs), pond
jakobshavn isbæøe - koughness measures

ATM full pond_0 parameter
ASTER 3B 05-2003 Background
Creating A Glacier Bed DEM for Jakobshavn's Trough as Low-Resolution Input for Dynamic Ice Sheet Models

(1) Derivation of an Algorithm for Adjusting Topography to Grids while Preserving Sub-Scale Morphologic Characteristics

(2) A service to SeaRISE: estimation of maximal ice-sheet contribution to sea-level rise (in 200 years)
Jakobshavn region subglacial topography (CReSIS, prelim)
With AlgoA trough set (red)

radar data: Center for Remote Sensing of Ice Sheets (CReSIS), University of Kansas
cartography and coloring of CReSIS data by Bruce Wallin
Greenland subglacial topography - without Jak trough

based on
Bamber, Layberry and Gogineni
2001
Jakobshavn region subglacial topography - without Jak trough

based on Bamber, Layberry and Gogineni 2001
Jakbed Algo

(1) identification of trough location
(2) establish edge-connectedness of trough bottom
(3) adjustment of high-resolution grid to trough-location (morph-stretch algorithm for entire Jak region), preserves morphology
(4) apply distance-weighted average in morph-stretched topology
(5) assign local trough minimum to grid nodes in trough set
Intermediate step after morph-stretch and distance-weighted averaging, v5

(from Herzfeld, Wallin, Leuschen and Plummer 2010)
Jakobshavn region subglacial topography
AlgoA (edge-connected), morph-stretched, v5

(from Herzfeld, Wallin, Leuschen and Plummer 2010)
Integration of Jakbed into Greenland modeling DEMs

(1) trafo CRESIS data onto same coordinate system as used by modeling groups
(2) utilize netCDF format preferred by modeling groups
(3) morph-stretch algo facilitates seamless integration
(4) variable package provided for easy use of data in model runs (bed topography, precipitation and other data fields)

see http://websrv.cs.umt.edu/isis/index.php/SeaRISE_Assessment (maintained by Jesse Johnson’s group at University of Montana)
Greenland subglacial topography - with Jak trough (v5)

Uploaded to SeaRISE web site (http://websrv.cs.umt.edu/isis/index.php/SeaRISE_Assessment) [Developmental data set 1.2] (from Herzfeld, Wallin, Leuschen and Plummer 2010)
Does bed topography create turbulence?

(1) *in reality*: creates surface roughness structures (which we understand)

(2) *in models*: does it create artificial turbulence in model runs? (q to modeling community/ searise experiment runs)
Implications of spatial surface roughness and topography for climate modeling

(1.) Indicator variable for harder-to-observe spatial properties
(2.) Ice dynamics
(3.) Effects on energy fluxes ice-atmosphere
(4.) Snow- and ice-surface-roughness — climate — ablation feedback
(5.) Influence of subglacial morphology on ice dynamics
(n.)[your idea here]
Questions?
Snow- and ice-surface-roughness — Climate — Ablation feedback

(1) Derivation of mathematical relationship between surface roughness and geostatistical characterization
(2) Calculation of surface roughness length from GRS measurements
(3) Utilization of micrometeorological observations (PARCA Network Greenland; Mountain Research Station, Niwot Ridge (NSF CU LTER))
(4) Calculation of energy available for melting (with J. Box, M. Kuhn)

Result: Melt energy varies by a factor of 2.6 dependent on surface roughness!!