The Rationale for Developing Neural Network Emulations for CAM5 and CESM1/CAM5

J. Tribbia, P. Rasch, V. Krasnopolsky, and M. Fox-Rabinovitz

The 2010 CCSM Workshop, Breckenridge, CO, June 28-July 2, 2010
• Any parameterization of model physics can be reproduced (emulated) to a very high accuracy using Neural Network (NN)
• A “representative” training dataset consisting of "inputs" (the "intent in" variables) and outputs (the "intent out") variables that appear in a parameterization should be given to train NN.
• “Representative” set spans the range of variation that one expects the parameterization to be subjected to. It can be created using model simulated data.
• We call such a NN emulation – a "parameterization emulator"
Background – 2

• “A posteriori" corrections to the NN emulation to guarantee, for example, that the heating rates and fluxes are internally consistent, can be introduced.

• Parameterization emulator is carefully tested:
 – on independent (not used for training) set of simulated data
 – in parallel runs: (1) Control run (model with the original parameterization) and (2) NN run (model with the NN emulation)

• Several methods have been developed to control the accuracy of the NN emulation and correct it during the model run.

• NN emulation can be adjusted to climate changes

• This method has been applied to develop:
 – NN emulation of CAMRT long- and short wave radiation
 – NN emulation of RRTM long- and short wave radiation in NCEP CFS
 – NN based convection parameterization using CRM data
The contour intervals for the PRATE fields are 1 mm/day for the 0 – 6 mm/day range and 2 mm/day for the 6 mm/day and higher; for the PRATE differences the contour intervals are 1 mm/day.
NCEP CFS, 17 year mean Total Cloud. In %, JJA

CTL
Mean = 0.44; rmse = 2.42

NN Run
Mean = -0.15; rmse = 2.58

NN – CTL
Mean = 0.44; rmse = 2.42

CTL1 – CTL2
Mean = -0.15; rmse = 2.58
Pros and Cons

• Pros
 – one can develop an NN "emulation" of a parameterization that is indistinguishable from the original parameterization, but is **one to two orders of magnitude faster** than the original, which can be used to:
 • Speed up the model integration (~25% for NCEP CFS T126L64)
 • Increase the frequency of radiation calculations (e.g., calculate it every time step)
 • Use ensemble of NNs (perturbed and stochastic physics)
 • Increase model resolution, etc

• Cons
 – Is not physically transparent as the original parameterization is
 – Should be retrained after major changes in the model (e.g., after a change of vertical resolution).
Conclusions

- Several NN emulations of model physics have been successfully developed:
 - NN emulation of CAMRT long- and short wave radiations (Krasnopolsky et al., MWR, 2005 and 2008)
 - NN emulation of RRTM long- and short wave radiations in NCEP CFS (Krasnopolsky et al., MWR, 2010)
 - NN based convection parameterization using CRM data
- The approach is carefully tested and ready for “production” (including NN ensembles)
- Why would you not adopt such a strategy for CAM5 and CESM1/CAM5?
Additional Slides
FAQ

• **Q:** Why ECMWF uses NeuroFlux for 4D-Var only but not for NWP?

• **A:** Because NeuroFlux has many limitations related to its design (Morcrette et al., 2008) and also (Krasnopolosky et al. 2005):
 - both accuracy and rapidity could not be kept at once at higher vertical resolution (60 and more layers)
 - The accuracy in the lowest and uppermost atmospheric layers is not satisfactory due to the increased non-linearity there.

• **Our NN emulation approach is different and free of the above limitations** so that it has been successfully applied to:
 - LWR and SWR for CAMRT and NCEP CFS RRTM
 - Currently it is being applied to convection
 - Works with high vertical resolution
 - Is significantly more accurate and faster
 - Provides a better Jacobian
 - Allows using NN ensembles as stochastic physics to reduced uncertainties
Evaluation of NN emulation

• Validation on independent set of simulated data:
 – Accuracy of approximation
 – Speed up (code by code comparison)

• Validation in parallel runs:
 – (1) Control run (model with the original parameterization) and (2) NN run (model with NN emulation)
 – Differences are evaluated and are comparable with:
 • Observation errors
 • Uncertainties of reanalysis
 • Model “internal variability”
Radiation – a computational bottleneck

• **Cost of the radiation is a problem for GCMs, NWP and other models:**
 – ECMWF calculates radiation on a coarse grid and then interpolates horizontally to a fine grid
 – Canadian operational model calculates radiation at reduced vertical resolution and then interpolates vertically
 – NCAR, NCEP and UKMO calculate radiation less frequently than other model components
Background

- Any parameterization of model physics is a relationship or **MAPPING** (continuous or almost continuous) between two vectors: a vector of input parameters, X, and a vector of output parameters, Y,

 $$Y = F(X); \quad X \in \mathbb{R}^n \text{ and } Y \in \mathbb{R}^m$$

- **NN** is a **generic approximation** for any continuous or almost continuous mapping given by a set of its input/output records:

 $$\text{SET} = \{X_i, Y_i\}_{i=1, \ldots, N}$$
Fast and Accurate Neural Network Radiation

• **Fast NN emulations of LWR and SWR:**
 – Are very accurate; the changes they introduce in the model results are of the order of the model “internal variability”
 – Reduce significantly (**one to two orders of magnitude**) the computation cost of radiation
 – Improve the load balance

• **NN radiation is very flexible, the improved computational performance can be used to:**
 – Speed up the model integration (~25% for NCEP CFS T126L64)
 – Increase the frequency of radiation calculations (e.g., calculate it every time step)
 – Use ensemble of NNs (perturbed and stochastic physics)
 – Increase model resolution, etc
Bulk Approximation Statistics
(all errors are in K/Day)

<table>
<thead>
<tr>
<th>Statistics Types</th>
<th>Statistics</th>
<th>LWR</th>
<th>SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NCAR CAMRT (L = 26)</td>
<td>NCEP CFS (L = 64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRTMG</td>
<td>RRTMF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NCAR CAM (L = 26)</td>
<td>NCEP CFS (L = 64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RRTMG</td>
<td></td>
</tr>
<tr>
<td>Total (3D) Error Statistics (K/day)</td>
<td>Bias</td>
<td>3. · 10⁻⁴</td>
<td>2. · 10⁻³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.34</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>-2. · 10⁻³</td>
<td>-1. · 10⁻²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
<td>0.64</td>
</tr>
<tr>
<td>Bottom Layer (2D) Error Statistics</td>
<td>Bias</td>
<td>-1. · 10⁻³</td>
<td>-9. · 10⁻³</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.06</td>
<td>0.18</td>
</tr>
<tr>
<td>Top Layer Error (2D) Statistics</td>
<td>Bias</td>
<td>-1. · 10⁻³</td>
<td>-9. · 10⁻³</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.06</td>
<td>0.18</td>
</tr>
<tr>
<td>Speedup, η Times</td>
<td></td>
<td>150</td>
<td>16 (20)</td>
</tr>
</tbody>
</table>

RMSE
- LWR: 0.34, 0.49, 0.42, 0.19, 0.20
- SWR: 0.86, 0.64, 0.67, 0.43, 0.22

Bias
- LWR: 3. · 10⁻⁴, 2. · 10⁻³, 7. · 10⁻⁴, -4. · 10⁻³, 5. · 10⁻³
- SWR: -2. · 10⁻³, -1. · 10⁻², 6. · 10⁻³, -5. · 10⁻³, 9. · 10⁻³

RMSE
- LWR: 0.34, 0.49, 0.42, 0.19, 0.20
- SWR: 0.86, 0.64, 0.67, 0.43, 0.22

Bias
- LWR: -2. · 10⁻³, -1. · 10⁻², 6. · 10⁻³, -5. · 10⁻³, 9. · 10⁻³
- SWR: -1. · 10⁻³, -9. · 10⁻³, 2. · 10⁻³, 2. · 10⁻³, 1.3 · 10⁻²

RMSE
- LWR: 0.06, 0.18, 0.09, 0.17, 0.21
- SWR: 0.06, 0.18, 0.09, 0.17, 0.21

Speedup, η
- LWR: 150, 16 (20), 21, 20, 60 (90)
- SWR: 150, 16 (20), 21, 20, 60 (90)
Neural Network
Continuous Input to Output Mapping

\[Y = F_{NN}(X) \]

\[y_q = a_{q0} + \sum_{j=1}^{k} a_{qj} \cdot t_j \]

Neuron

\[t_j = \tanh(b_j + \sum_{i=1}^{n} \Omega_{ji} \cdot x_i) \]
Major Advantages of NNs:

- NNs are **generic, very accurate and convenient** mathematical (statistical) models which are able to emulate numerical model components, which are complicated nonlinear input/output relationships (continuous or almost continuous mappings).
- NNs are **robust** with respect to random noise and fault-tolerant.
- NNs are **analytically differentiable** (training, error and sensitivity analyses): almost free Jacobian!
- NNs emulations are **accurate and fast but there is NO FREE LUNCH!**
 - Training is a complicated and time consuming nonlinear optimization procedure; **however, training should be done only once for a particular application!**
- NNs are well-suited for parallel and vector processing
Development of NN Emulations of Model Physics Parameterizations

Learning from Data

GCM

\[F_{NN} \]

Training Set \[\ldots, \{X_i, Y_i\}, \ldots \]

\[\forall X_i \in D_{phys} \]

\[F_{NN} \]