A Patch Recovery Interpolation method

David Neckels

National Center for
Atmospheric Research
Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the atmospheric wind velocity on the ocean grid.
Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the atmospheric wind velocity on the ocean grid.

Typically the atmospheric grid scale is much coarser than the ocean grid scale.
Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the atmospheric wind velocity on the ocean grid.
Example: Interpolating atmospheric winds, ...

Consider an analytic flow pattern
Example: Interpolating atmospheric winds, ...

Consider an analytic flow pattern
Example: Interpolating atmospheric winds, ...

Consider an analytic flow pattern

Of interest is the surface stress $\tau = C_p |U| U$, where $U = (u, v)$, especially $\nabla \times \tau$.
Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth
Example: curl of tau

Curl of the **analytic flow** on the ocean grid is smooth
Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth

Curl of the standard bi-linear interpolant is not!
Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are several key steps
Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are several key steps

- Parallel rendezvous
Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are several key steps

- Parallel rendezvous
- Search (point in box)
Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are several key steps

- Parallel rendezvous
- Search (point in box)
- Interpolation method (bi-linear, conservative, patch...)

David Neckels, NCAR – p.5/17
Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are several key steps

- Parallel rendezvous
- Search (point in box)
- Interpolation method (bi-linear, conservative, patch...)

Each of these topics is its own talk. We begin with the Interpolation method.
Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme
Bi-linear interpolation

A standard interpolation scheme is the **bi-linear scheme**
Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V, W, Z, with the bi-linear shape functions ϕ as the weights.
Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V, W, Z, with the bi-linear shape functions ϕ as the weights.

A reasonable approximation to ∇A is $U\nabla \phi_1 + \cdots + Z\nabla \phi_Z$.
Patch based methods

We form the interpolant at • using polynomials based on the node patches of the encompassing cell:
Patch based methods

We form the interpolant at • using polynomials based on the node patches of the encompassing cell.
Patch based methods

We form the interpolant at • using polynomials based on the node patches of the encompassing cell:
Patch based methods

We form the interpolant at • using polynomials based on the node patches of the encompassing cell:
Patch based methods

We form the interpolant at • using polynomials based on the node patches of the encompassing cell:
Patch based methods,...

On each patch we sample the source function at a set of sample points (usually quadrature points) \(\Delta \), using local bi-linear interpolation if necessary.

Call these samples \(s_i \) at (local 2D) coordinates \(p_i \).
Local polynomial approximation

We fit a tensor product polynomial through these values, solving for the polynomial coefficients c

$$\min_c \sum_i (Q(c, p_i) - s_i)^2$$
Local polynomial approximation

We fit a tensor product polynomial through these values, solving for the polynomial coefficients \(c \)

\[
\min_c \sum_i (Q(c, p_i) - s_i)^2
\]

Which yields the least squares system \(A^T A c = A^T s \) and \(Q(p) = b(p)^T (A^T A)^{-1} s \) where \(b \) is the vector of the polynomial basis functions evaluated at the sample points.
Local polynomial approximation

We fit a **tensor product polynomial** through these values, solving for the polynomial coefficients c

$$
\min_c \sum_i (Q(c, p_i) - s_i)^2
$$

Which yields the **least squares system** $A^T A c = A^T s$ and $Q(p) = b(p)^T (A^T A)^{-1} s$ where b is the vector of the polynomial basis functions evaluated at the sample points.

On a **manifold**, the local coordinates p_i may either be **full 3D coordinates**, or the coefficients of the **co-space of a reasonable normal**.

This avoids **pole type singularities** in the patch algorithm (i.e. don’t use lat/lon).
Blending the patches

We use any partition of unity on the cell to blend the patches for a value $F(x) = \sum_j \psi_j(x) Q(x)$, for instance the bi-linear basis.
Blending the patches

We use any partition of unity on the cell to blend the patches for a value $F(x) = \sum_j \psi_j(x) Q(x)$, for instance the bi-linear basis.
Blending the patches

We use any partition of unity on the cell to blend the patches for a value $F(x) = \sum_j \psi_j(x) Q(x)$, for instance the bi-linear basis.

Explicitly, accounting for the local coordinate system $p = L(x)$ and the bi-linear interpolation to sample locations $s = \Phi f$, the interpolant is a linear function of the coefficients f on this enlarged stencil,

$$F(x) = \sum_j \left[\psi(x)(b \circ L(x))^\top (A^\top A)^{-1} \Phi \right]_j f$$
Curl of the analytic flow on the ocean grid is smooth
Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth
Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth

The patch recovery curl is far more reasonable compared to the bi-linear!
Some results from interpolation theory

Interpolating a function $f(x)$ into the space of continuous piecewise polynomial functions of order p on a discretization \mathcal{T}_h, with cell diameters h, using exact values of f at the nodes yields
Some results from interpolation theory

Interpolating a function \(f(x) \) into the space of continuous piecewise polynomial functions of order \(p \) on a discretization \(\mathcal{T}_h \), with cell diameters \(h \), using exact values of \(f \) at the nodes yields

\[
\| D^m (f - I f) \|_{L^2} \leq C h^{(p+1) - m} \| D^{p+1} f \|_{L^2}
\]
Some results from interpolation theory

Interpolating a function $f(x)$ into the space of continuous piecewise polynomial functions of order p on a discretization \mathcal{T}_h, with cell diameters h, using exact values of f at the nodes yields

$$||D^m(f - I f)||_{L^2} \leq Ch^{(p+1)-m}||D^{p+1}f||_{L^2}$$

i.e. for bi-linear interpolation

$$||f - I f||_{L^2} \leq Ch^2||D^2 f||_{L^2}$$
Some results from interpolation theory

Interpolating a function $f(x)$ into the space of continuous piecewise polynomial functions of order p on a discretization \mathcal{T}_h, with cell diameters h, using exact values of f at the nodes yields

$$\|D^m (f - \mathcal{I}f)\|_{L^2} \leq Ch^{(p+1)-m}\|D^{p+1}f\|_{L^2}$$

i.e. for bi-linear interpolation

$$\|f - \mathcal{I}f\|_{L^2} \leq C h^2 \|D^2f\|_{L^2}$$

and

$$\|\nabla (f - \mathcal{I}f)\|_{L^2} \leq C h \|D^2f\|_{L^2}$$
Some results from interpolation theory

Interpolating a function $f(x)$ into the space of continuous piecewise polynomial functions of order p on a discretization \mathcal{T}_h, with cell diameters h, using exact values of f at the nodes yields

$$\| D^m (f - I f) \|_{L^2} \leq C h^{(p+1)-m} \| D^{p+1} f \|_{L^2}$$

i.e. for bi-linear interpolation

$$\| f - I f \|_{L^2} \leq C h^2 \| D^2 f \|_{L^2}$$

and

$$\| \nabla (f - I f) \|_{L^2} \leq C h \| D^2 f \|_{L^2}$$

Smoothness is required, at least of weak derivatives $\| D^2 f \|_{L^2}$.
An experiment

We perform a convergence study for the analytic function

\[f(x, y) = (1 - xy) \sin 3\pi x \cos 2\pi y \]

on the unit square using patch and bi-linear interpolation.
An experiment

We perform a convergence study for the analytic function

\[f(x, y) = (1 - xy) \sin 3\pi x \cos 2\pi y \]

on the unit square using patch and bi-linear interpolation.

 Exact
An experiment

We perform a convergence study for the analytic function

\[f(x, y) = (1 - xy) \sin 3\pi x \cos 2\pi y \]

on the unit square using patch and bi-linear interpolation.

Bilinear
An experiment

We perform a convergence study for the analytic function

\[f(x, y) = (1 - xy) \sin 3\pi x \cos 2\pi y \]

on the unit square using patch and bi-linear interpolation.
Results

We compute the L^2 error on a super fine grid.
Results

We compute the L^2 error on a super fine grid.
Results

We compute the L^2 error on a super fine grid.

Rates are $P = 3.14, B = 1.96, \nabla P = 2.01, \nabla B = 1.01$.
A real wind field

We compare interpolation methods on realistic wind data
A real wind field

We compare interpolation methods on realistic wind data

The exact wind field ($|U|$)
A real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
A real wind field

We compare interpolation methods on realistic wind data

The patch interpolant
Curl of the real wind field

We compare interpolation methods on realistic wind data
Curl of the real wind field

We compare interpolation methods on realistic wind data

The exact wind field ($\nabla \times \mathbf{U}$)
Curl of the real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
Curl of the real wind field

We compare interpolation methods on realistic wind data

The patch interpolant
The End