CESM Software Engineering Working Group

A selection of major activities

Bill Sacks
CESM SEWG co-chair
Credits: Many members of the SEWG and others

13 JUNE 2022
New / Significantly Expanded Components

Key

- **Existing component**
- **New component, coupling complete**
- **New component, coupling in progress**

Support for running multiple ice sheets (e.g., Greenland & Antarctica) in a single simulation; changes towards simulating Antarctica and mountain glaciers

- **NUOPC Cap**
- **CMEPS**
- **RTM**
- **MOSART**
- **mizuRoute**
- **River**
- **CDEPS: data rof**
- **NUOPC Cap**

NUOPC Cap

CICE5
- **Sea Ice**
- **CDEPS: data ice**

NUOPC Cap

CTSM
- **SLIM (Simple Land Model)**
- **Land**
- **CDEPS: data land**

NUOPC Cap

CICE6
- **Sea Ice**
- **CDEPS: data ice**

NUOPC Cap

CTSM
- **SLIM (Simple Land Model)**
- **Land**
- **CDEPS: data land**

NUOPC Cap

RTM
- **MOSART**
- **mizuRoute**
- **River**
- **CDEPS: data rof**

NUOPC Cap

CISM
- **Land Ice**

NUOPC Cap

WW3
- **WW3-dev**
- **Wave**
- **CDEPS: data wav**

NUOPC Cap

CICE5
- **Sea Ice**
- **CDEPS: data ice**

NUOPC Cap

NUOPC Cap

NUOPC Cap

CAM
- **Atmosphere**
- **CDEPS: data atm**

NUOPC Cap

POP
- **MOM**
- **Ocean**
- **CDEPS: data ocn**

Increasing use of FATES (Functionally Assembled Terrestrial Ecosystem Simulator) sub-component, and many other changes

Expanded support for multiple dynamical cores; major software infrastructure rework underway, including physics reordering and evolution towards SIMA framework
New Infrastructure Repositories

• CIME (https://github.com/esmci/cime/) is now mainly limited to the python-based Case Control System (jointly developed and used by CESM & E3SM)

• Fortran-based model infrastructure now resides in its own repositories:
 – CMEPS
 – CDEPS
 – CESM_share
 – CPL7 (deprecated)

• Configuration data is now in CCS_config

• For pointers to each infrastructure and component repository:
 – Or click on “New issue” from https://github.com/ESCOMP/CESM/issues to get links to each repository’s issues page
CMEPS / CDEPS Updates

CMEPS / CDEPS is now the default coupling infrastructure & data models for CESM
 - Extensive validation was done, including multi-century simulations
 - The MCT-based infrastructure will soon be deprecated in development code; still supported in CESM2.1 (CMIP6) release code

Updates to CMEPS coupling:
 - Atmosphere-ocean flux calculation can now be done on the exchange grid
 - Added exchange of enthalpy fluxes – needed for energy conservation with MOM
 - Multiple ice sheets (e.g., Greenland and Antarctica) can be run simultaneously, controlled at runtime
 - Can couple multiple ocean layers with ice sheets

CDEPS data model functionality now extensively used in multiple components (e.g., nitrogen deposition read by CAM)

(more details Wed. at 8:35 am)
CMEPS / CDEPS Benefits

- Jointly developed by NCAR and NOAA
 - Has enabled sharing code and caps for CICE6, MOM6 and WW3 with NOAA
 - Testing the coupling and data models in multiple modeling systems leads to a much more robust code base
 - CDEPS’s use by NOAA is bringing in support for new forcing data streams

- Much easier to introduce new grids
 - Most mapping generation now done at runtime: **now only need 4 pre-generated mapping files** (for custom runoff mapping) **instead of 25**
 - No longer need domain files to specify land fraction

- Can transfer 3-d fields and related fields as a single packaged field

- CDEPS provides ability to do 3-d mapping from input streams and provides many new mapping types
ESMF Updates

A selection of enhancements in the latest ESMF releases:

- All regridding methods are now supported on exchange grids
- Progress towards adopting the Mesh-Oriented datABase (MOAB) library for internal mesh representation
- Update “creep fill” extrapolation method
- Flexible NUOPC alarm specification, allowing model phases like writing of restart files to be executed less frequently
- New options for detailed performance profiling of NUOPC components
- Upgrade to ParallelIO (PIO) from v1 to v2
- Various performance optimizations: Per-component threading levels, scalable mesh creation from file, and others
Improved Threading Control in CESM

- Previously, if OpenMP-based threading was used, all components needed to use the same number of threads
- Now each component’s thread count can be controlled separately
- Allows for finer-grained control of load balancing and improved scalability: some components perform better with threading, whereas others perform better without threading
- Enable by setting the xml variable `ESMF_AWARE.Threading=TRUE`
Ultra-high Resolution CESM

- Targeting a 3.75km global CAM configuration
 - Have successfully run a 7.5km F2000 (coupled atmosphere-land with data ocean) case; needed to resolve several memory bottlenecks
 - Currently working through additional challenges exposed with 3.75km
- Also working on a similar configuration coupled to MOM at high resolution with the Texas Advanced Computing Center (TACC)
Common Community Physics Package (CCPP)

- CCPP contains a library of physical parameterizations and a framework that connects it to host models
- It is used by various host models: the CCPP Single-Column Model, the Navy experimental NEPTUNE model, and by the Unified Forecast System. It is on track for transition to NOAA operations in 2023.
- MPAS/WRF now have a suite of CCPP-compliant parameterizations that can be executed directly
- CCPP Framework is under further development by NCAR/CGD to meet additional NCAR requirements

(more details Wed. at 9:05 am)
Cloud Updates:
- Secure multi-user JupyterHub deployment on-demand
- ‘EASE’ Kernel (preinstalled conda environment)
- CESM ready to run on AWS HPC6a instances
- Persistent accounts via email addresses: will help enable community-based training

Container Updates:
• CTSM-Lab / CESM-2.3-based containers
• Arm M1 versions
• Updated to use EASE kernel (soon)
GUI & Tools to Support CESM Simpler Models & Custom Configurations

- Graphical user interface guides users through the process of creating CESM cases: choosing appropriate compsets & grids
- New metadata and logic module to check compatibility of compset options and grid
- New land model tools to facilitate creating surface data sets for custom grids and configurations, including idealized configurations

Primary SEs: A. Altuntas, S. Levis
Funded by an NSF CSSI award. (PIs: Bachman, Simpson)
Lossy Compression and CESM Data
(more details Wed. at 10:45 am)

Goal: Use lossy compression to reduce CESM storage …without (negatively) impacting science results!

Challenges:
• Compression affects fine spatial and temporal scales
• CESM data diversity: “one-size-fits-all” approach not optimal

Our focus:
Evaluating the effect of lossy compression on CESM data via spatio-temporal statistical analysis tools that emulate the key aspects of climate data analysis (e.g., LDCPy) in order to predict optimal compression

Current work:
• DSSIM (Data Structural Similarity Index Measure)
 • Newly developed to apply directly to floating-point data
 • Indicates whether images generated from the data are likely to have noticeable differences
• A tool for auto-selection of compressor and parameters
 • Using features of the data, can we say something about what type of (and how much) compression to use?
 • We compare statistical models using explicit features and deep learning approaches

A. Baker, A. Pinard, D. Hammerling and H. Xu
New Diagnostics Packages

 – The ADF can now replicate most core features of the old AMWG diagnostics (some plot types and observational datasets are still under development)
 – The ADF will be required for CAM7 / CESM3: it is vertical-level agnostic so can manage the new CAM7 vertical levels (more details Wed. at 10:25 am)

• Climate Variability Diagnostics Package (CVDP)
 – CVDP v5.2.0 was released in Fall 2021, and has been wrapped into the ADF
 – The CVDP can now read unstructured grids from atmospheric/land components

• Ocean Model Diagnostics Package
 – Interim diagnostics package in place for MOM development
 – So far only used internally; more work needed to make it accessible to the community

• Land Ice Diagnostics Package
 – New diagnostics package in early development and planning phase
 – External collaborations through the Ghub.org Glacier science hub and the Ice Sheet MIP (ISMIP) will provide avenues for the community to benefit from this work