Impact of parameterized submesoscales in a Forced Ocean Sea-Ice simulation

Sanjiv Ramachandran
Department of Oceanography, Texas A&M University

Jan. 26, 2022

CESM Ocean Modeling Working Group 2022 Meeting

Funding: iHESP project, TAMU
Acknowledgements

TAMU: Ping Chang, Abishek Gopal, Qiuying Zhang

NCAR: Fred Castruccio, Jim Edwards, Gokhan Danabasoglu, Steve Yeager

Programming support: Xarray and CESM community (Deepak Cherian, Anna-Lena Deppenmeier, Keith Lindsay and others)

Computing: Texas Advanced Computing Center (UT Austin), High-Performance Computing Center (TAMU) Casper, Cheyenne (UCAR)
Ocean-model comparison protocols

CORE I: 500-year long simulations forced by 1-year repeating forcing (Griffies et al., 2009)

CORE II: Simulations forced by 60-year forcing cycles with interannual variability (Danabasoglu et al., 2014, 2016)

OMIP-1: Similar to **CORE II** but with 61-year cyclic JRA55 forcing (Griffies et al., 2016)

OMIP-2: Similar to **OMIP-1** but with JRA55-do forcing (Chassignet et al., 2016)

(and many others)
FOSI: Forced Ocean Sea-Ice experiment

Similar to OMIP-2
Atmospheric forcing and river runoff from 61-year cyclic JRA55-do reanalysis

Ocean model: POP (Parallel Ocean Program)
Ice model: CICE (Los Alamos)
Nominal ocean resolution: 0.1 deg (62 levels)

Initial T, S: January climatology from WOA
Initial velocity: At rest
FOSI: Forced Ocean Sea-Ice experiments

Existing hi-res FOSI data: **5 cycles, years 1-305**

- No submesoscale parameterization
- Tuning of sea-ice albedo + restoring of temperature under sea-ice in **5th cycle**
FOSI: Forced Ocean Sea-Ice experiments

Existing hi-res FOSI data: 5 cycles, years 1-305

- No submesoscale parameterization
- Tuning of sea-ice albedo + restoring of temperature under sea-ice in 5th cycle

Present work: Simulate ~1 FOSI cycle with submesoscale parameterization

Frontal length scale = 5 km

Branch run from year 0245
54 years completed (1958-2011)

Fox-Kemper et al. (2008)
FOSI: Forced Ocean Sea-Ice experiments

Existing hi-res FOSI data: 5 cycles, years 1-305

No submesoscale parameterization
Tuning of sea-ice albedo + restoring of temperature under sea-ice in 5th cycle

Present work: Simulate ~1 FOSI cycle with submesoscale parameterization

Output: monthly fields

Analysis period: Years 16-54

Fox-Kemper et al. (2008)

Frontal length scale = 5 km
Existing hi-res FOSI data: 5 cycles, years 1-305

No submesoscale parameterization

Tuning of sea-ice albedo + restoring of temperature under sea-ice in 5th cycle

Present work: Simulate ~1 FOSI cycle with submesoscale parameterization

Output: Monthly fields

Fox-Kemper et al. (2008)

The MLE parameterization of Fox-Kemper et al. (2008b) is given by

$$\Psi_0 = C_e \frac{H^2 \nabla b^z \times \hat{z}}{|f|} \mu(z),$$

(5)

$$\mu(z) = \max \left\{ 0, \frac{1}{\left[\left(\frac{2z}{H} + 1 \right) \right]^2} \left[1 + \frac{5}{21} \left(\frac{2z}{H} + 1 \right)^2 \right] \right\}.$$

where H is mixed layer depth, f is the Coriolis parameter, and \hat{z} is the unit vertical vector. The subscript 0 is to indicate that this is the original form appropriate for extratropical, mesoscale-resolving models. A modified form appropriate for coarse-resolution global models is given below. The overline with subscript z on ∇b^z is understood to be the depth-average of ∇b over the mixed layer. The efficiency coefficient C_e is found to be 0.06-0.08 from MLE-resolving simulations (Fox-Kemper et al., 2008b).

An adaptation to (5) that is suitable and justified in a global coarse-resolution model is

$$\Psi = C_e \frac{\Delta s}{L_f} \frac{H^2 \nabla b^z \times \hat{z}}{\sqrt{f^2 + \tau^2}} \mu(z).$$

(6)

Frontal length scale = 5 km

Analysis period: Years 16-54
MOC averaged between 2004–2011
Mixed-layer definition: Shallowest depth where local N^2 matches bulk N^2 referenced to the surface

Δ: $\text{FOSI}_{\text{subm}} - \text{FOSI}_{\text{nosubm}}$
Globally averaged SST

FOSI_{nosubm}
2.2. General Structure of the KPP Parameterization

For any prognostic scalar or vector field component ψ (e.g., tracer concentration and velocity component), the KPP scheme parameterizes the turbulent vertical flux within the surface boundary layer according to

$$\langle w'\psi' \rangle = -K_\psi \frac{\partial \psi}{\partial z} + K_{\psi'} \psi', \quad (5)$$

where ψ' represents the subgrid scale fluctuation relative to ψ. The first right-hand side term represents the local contribution to the turbulent vertical flux of ψ, and the second term is the parameterized nonlocal flux. The eddy diffusivity K_ψ is written as the product of three terms

$$K_\psi = h w_\psi(\sigma) G(\sigma), \quad (6)$$

Van Roekel et al. (JGR, 2018)

Plot on the previous slide is the negative divergence of this term.
Globally averaged heat budget

FOSI_{subm}
Globally averaged heat budget

![Graph showing heat budget with depth and temperature changes.](image-url)
Resolved eddy advection

\[-\nabla \cdot (\mathbf{u}'T')_{\text{res}} \text{ at 5 m depth} \]

Submesoscale temperature tendency

\[-\nabla \cdot (\mathbf{u}'T')_{\text{res}} \text{ at 5 m depth} \]

Submesoscale temperature tendency at 5 m depth

\[-\nabla \cdot (\mathbf{u}'T')_{\text{res}} \text{ at 5 m depth} \]

Submesoscale temperature tendency at 5 m depth

\[-150 -100 -50 0 50 100 150 \]

\[-150 -100 -50 0 50 100 150 \]

\[-150 -100 -50 0 50 100 150 \]

\[-150 -100 -50 0 50 100 150 \]
Eddy vertical heat flux

\[\langle w'T' \rangle = \langle wT \rangle - \langle w \rangle \langle T \rangle \]
R-CESM: WRF + ROMS coupled simulation of the North Pacific at 3 km resolution

Fu et al. (BAMS, 2021)
Eddy vertical heat flux

Kuroshio

Gulf Stream

Depth (m)

Eddy heat flux (W/m²)

Flux convergence (°C/year)
In a 0.1° FOSI run, the contribution from parameterized submesoscales to the temperature tendency is comparable to that from resolved eddy advection.

Repartitioning of resolved and submesoscale heat flux to yield nearly the same total flux in the upper ocean

Necessary to explore the impact of new models for the frontal length scale L_f (Bodner et al., 2021) in 0.1° POP