Observations of the surface and atmosphere from remotely-piloted aircraft during MOSAiC

Gijs de Boer1,2

John Cassano1, Radiance Calmer1, Gina Jozef1, Jonathan Hamilton1, Julia Schmale3, Andreas Preußer4, Dale Lawrence1, Steve Borenstein1, Brian Argrow1

1University of Colorado Boulder
2NOAA Physical Sciences Laboratory
3Alfred Wegener Institut

Financial and Logistical Support:
US NSF OPP-1805569
NOAA Physical Sciences Laboratory
Alfred Wegener Institut
Introduction to Team and Science Targets

Primary MOSAiC UAS Science Targets:

- Understanding sub-grid scale variability in the coupled system and the ability of today’s modeling tools to capture features resulting from this variability

- Observing and understanding variability in sea ice and its contribution to energy transfer in the ice-atmosphere-ocean interface

- Understanding the impact of coarse vertical resolution in models on the proper representation of complex boundary layer structures in the central Arctic
MOSAiC Drift and Flights

Legs 1 & 2 DataHawk Flights (89 flights, 42.9 hours)
New Leg 3 HELiX Flights (36 flights, 8.7 hours)
New Leg 4
New Leg 5

CESM Polar Climate Working Group Meeting, 10 February 2021
Aircraft Specs
• 1.1m wingspan
• 1.8kg weight
• 40-min endurance time

Measured Variables
• Temperature, pressure, humidity, wind speed
• IR temperature
• Turbulence

Platforms: DataHawk2

Pressure, Temperature, Relative Humidity
Vaisala RSS-421 PTH Sensor

IR Temperature
Custom IR Sensor (2x)

Turbulence
Custom fine wire array with Sensirion SHT85
Objectives for the DataHawk2 focused on the atmospheric boundary layer, providing detailed observations of the vertical structure of the lower atmosphere

- to improve model representation of key processes
- to advance understanding of energy transfer between the surface and overlying atmosphere
DataHawk2 Profiling

Leg 3: March to May 2020

Leg 4: June to July 2020
DataHawk2 Lead Sampling

Location of Points Upwind, Downwind, and Over Lead

Mean Air Temperature by Flight Section vs. Altitude

Mean Absolute Humidity by Flight Section vs. Altitude

CESM Polar Climate Working Group Meeting, 10 February 2021
Platforms: HELiX

Aircraft Specs
• 12kg weight
• 20-min endurance

Measurements
• Upwelling and downwelling shortwave radiation – albedo
• Multispectral camera for surface imaging
• Pressure, temperature, relative humidity
Objectives for the HELiX included characterization of surface properties, including surface albedo, the sea ice and melt pond fractions

- to improve model representation of key processes
- to provide context for measurements from other systems
HELiX Albedo Mapping

Albedo Mapping

Multi-spectral camera
Assembled images
HELiX Feature Albedo Sampling

Photo: Michael Lonardi

Albedo

UTC Time, [HH:MM]

Melt pond
White ridge
Dirty snow melt pond
Blocs/Ocean
White snow

Photo: Michael Lonardi
HELiX Albedo Profiling To Understand Scales

Photo: Lianna Nixon
Engagement with Modeling Community

- Combined development of case studies, centered on specific phenomena of interest
- Evaluation of existing parameterizations through single-column framework
- Evaluation of heat transfer resulting from leads in the ice pack
 - Some initial work with S. Kreuger and X. Li at the U. of Utah to combine our observations with their LES of the lead environment
- Support development and advancement of parameterizations developed around older datasets
 - Initial meetings with CICE team about possible value of HELiX-based albedo measurements
- Evaluation of simulations specific to MOSAiC (e.g. CAFS or other modeling systems)
Summary and Impacts

- First successful *extended* deployment of small UAS systems in the “high” Arctic for Earth system research (to our knowledge)

- Detailed data collected documenting the thermodynamic and kinematic state of the lower Arctic atmosphere during legs 3-4 of MOSAiC

- Extended sampling of surface albedo throughout the melt season during leg 4 of MOSAiC

- Data are being processed and quality control metrics are being applied. Aim to share all data by spring 2021 through the NSF Arctic Data Center (https://arcticdata.io).

- Initial studies leveraging the atmospheric measurements to understand the impact of small leads, and to understand relationships between atmospheric state and lower-atmospheric mixing and turbulence are underway.

- We would like to engage the model-development community to identify the most impactful ways for these observations to be leveraged. Are there case studies that may be developed? Or ways to connect to parameterization evaluation and development efforts?