Update on the simulation of the Last Glacial Maximum using CESM2

Jiang Zhu

Acknowledgements: AMWG, LMWG, …

Credit: J. Tierney
CESM2 has an ECS > 5°C

Kiehl et al., 2006; Bitz et al., 2011; Gettelman et al., 2012, 2019; Danabasoglu et al., 2020; Bacmeister et al., 2020; Bjordal et al., 2020
Constraining ECS using the Last Glacial Maximum (LGM)

- LGM global cooling correlates with ECS
 (Shin et al., 2003; Otto-Bliesner et al., 2006; Brady et al., 2013; Zhu et al., 2017, 2020)

- The latest LGM global cooling: ~6°C
 (Tierney et al., Nature, 2020)
LGM simulations

- CESM2 (∼CMIP6 configuration)
 - BGCs off; No-Anthro; RTM; …
 - PI climate and ECS not impacted

- Boundary conditions
 - Lower GHGs
 - Land ice sheets: topography, land surface properties & shelf exposures
 - PI aerosol, vegetation & tidal mixing

- Initial condition: CESM1 LGM
CESM2 LGM is too cold in global mean surface temperature
CESM2 LGM is too cold in sea-surface temperature
SW cloud feedback explains the excessive LGM cooling in CESM2

<table>
<thead>
<tr>
<th></th>
<th>ΔGMST</th>
<th>ΔN</th>
<th>F_{eff}</th>
<th>λ_{eff}</th>
<th>ΔGMST</th>
<th>ΔN</th>
<th>F_{eff}</th>
<th>λ_{eff}</th>
<th>4×CO2</th>
<th>4×CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM2</td>
<td>−11.3</td>
<td>−0.2</td>
<td>−5.2</td>
<td>−0.48</td>
<td>0.76</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CESM1</td>
<td>−6.8</td>
<td>0.06</td>
<td>−6.0</td>
<td>−0.88</td>
<td>0.35</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff.</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LGM \(\lambda_{\text{sw_cloud}} \propto 4\times\text{CO2} \lambda_{\text{sw_cloud}} \)

![Graph showing LGM and 4xCO2 SW λ_{\text{sw_cloud}} variations](image)
CESM2 LGM is too cold, ECS is too high, and it’s the cloud.

Why?

Gettelman et al., 2019
Cloud microphysics and/or ice nucleation produces unrealistic LGM

- CAM6
- HetFrzOff: old ice nucleation
- Mg2Off: old microphysics
- ClubbOff: old turbulence & ShCu
- SB2001: alternative autoconversion/accretion

Proxy data
Lower ECS in LGM constrained configurations

<table>
<thead>
<tr>
<th>Model</th>
<th>ΔT_{LGM}</th>
<th>ECS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM6</td>
<td>-9.0^*</td>
<td>6.1</td>
</tr>
<tr>
<td>HetFrzOff</td>
<td>-5.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Mg2Off</td>
<td>-6.3</td>
<td>4.3</td>
</tr>
<tr>
<td>ClubbOff</td>
<td>-8.9^*</td>
<td>6.2</td>
</tr>
<tr>
<td>SB2001</td>
<td>-7.0^*</td>
<td>5.2</td>
</tr>
<tr>
<td>CAM5</td>
<td>-6.5</td>
<td>3.7</td>
</tr>
</tbody>
</table>

* Far from equilibrated

Graph: The graph shows the relationship between LGM SW λ_{clgd} on the x-axis and 2xCO2 SW λ_{clgd} on the y-axis. The data points indicate a positive correlation, with most models showing a lower ECS in LGM constrained configurations. The dashed line represents the equilibrated condition, while the dots represent the models with different ECS values.
Cloud microphysics and/or ice nucleation is not working well within CAM6

- Challenging to do it correctly
 - Simulate past cold & warm climates (e.g., Eocene)
 - Simulate present-day observation and historical warming
 - Agree with process understanding

- CESM2(CAM5): No WACCM5; Bad mean state mixed phase clouds