Dynamical Effects of a Stochastic Parameterization to Account for Uncertainties in the Horizontal Density Gradient of a Coarse-Resolution Ocean Model (MOM6)

J.S. Kenigson¹, A. Adcroft, S. Bachman, F. Castruccio, I. Grooms, P. Pegion, Z. Stanley

¹Department of Applied Mathematics · University of Colorado Boulder
Introduction
SGS T & S Variability with Nonlinear Seawater EOS

- \(T = \overline{T} + \Delta T, \quad S = \overline{S} + \Delta S \)

- Coarse-resolution ocean model:
 \(\rho_m = \hat{\rho}(\overline{T}, \overline{S}) \)

- Grid-cell mean density:
 \[
 \bar{\rho} = \frac{1}{V} \int_G \hat{\rho}(\overline{T} + \Delta T, \overline{S} + \Delta S) \, dx
 \]
 \[
 \bar{\rho} \approx \rho_m + \frac{\partial^2 \hat{\rho}(\overline{T}, \overline{S})}{2} \sigma^2_T
 \]

- See Stanley et al. (2020)
Unresolved SGS Temperature Variability

T Variance on ~1° Grid Diagnosed from ~0.1° POP Model

Figure adapted from Stanley et al. (2020)
Potential Density Correction

ρ Correction on $\sim 1^\circ$ Grid Diagnosed from $\sim 0.1^\circ$ POP Model

Figure adapted from Stanley et al. (2020)

$\rho_c = \bar{\rho} - \rho_m$

$\bar{\rho} \approx \sum_{i=1}^{N} w_i \hat{\rho}(T_i, S_i)$

Brankart (2013): A stochastic parameterization improves WBC separation, SSH field
Stanley (2020)
Parameterizations of SGS T Variance

- Deterministic parameterization:

\[\sigma_T^2 \approx c |\delta x \circ \nabla T|^2 \]

- Stochastic parameterization:

\[\sigma_T^2 \approx c e^\chi |\delta x \circ \nabla T|^2 \]

- \(\chi \) given by an AR-1 process

Figure adapted from Stanley et al. (2020)
Experimental Configuration

- MOM6 + CICE 5
- Global domain
- ~0.66° horizontal resolution
- 65 z* vertical layers
- Branch from existing “best” simulation

<table>
<thead>
<tr>
<th>#</th>
<th>Experiment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Det</td>
<td>Deterministic PGF & GM</td>
</tr>
<tr>
<td>3</td>
<td>Det PGF</td>
<td>Deterministic PGF Only</td>
</tr>
<tr>
<td>4</td>
<td>Det GM</td>
<td>Deterministic GM Only</td>
</tr>
<tr>
<td>5</td>
<td>Stoch</td>
<td>Stochastic PGF & GM</td>
</tr>
<tr>
<td>6</td>
<td>Stoch PGF</td>
<td>Stochastic PGF Only</td>
</tr>
<tr>
<td>7</td>
<td>Stoch GM</td>
<td>Stochastic GM Only</td>
</tr>
</tbody>
</table>
Winter (JFM/JAS) Mixed Layer Depth

Control

Winter (JFM/JAS) MLD Change

Expt - Control
Global Overturning Streamfunction

Control

Expt - Control

Thanks to Gustavo Marques for visualization tools
Gulf Stream Path – Potential Temperature (400 m)
Meridional Heat Transport

Control

Expt - Control

Thanks to Gustavo Marques for visualization tools

Nordic Seas SST

Control

Expt - Control
Nordic Seas JFM Sea Ice Thickness
Nordic Seas JFM Sea Ice Growth Rate

Control

Expt - Control
Summary & Conclusions

▪ Implementing and testing two parameterizations of the unresolved SGS temperature variability in coarse-resolution MOM6 to reduce uncertainties in the horizontal density gradient

▪ Stochastic parameterization:
 ▪ Increases wintertime MLDs in the Labrador Sea & Southern Ocean
 ▪ Increases MOC transport
 ▪ Increases Global & Atlantic PWT at mid-latitudes; decreases at high latitudes
 ▪ Improves representation of Gulf Stream path
 ▪ Leads to cooling & sea ice increase in the Nordic Seas
Extra Slides
Brankart (2013) Stochastic Parameterization

- Stochastic parameterization of ρ in buoyancy force:

$$\bar{\rho} = \frac{1}{2p} \sum_{i=1}^{p} \left[\hat{\rho}(\overline{T} + \xi_i \cdot \nabla T, \overline{S} + \xi_i \cdot \nabla S) + \hat{\rho}(\overline{T} - \xi_i \cdot \nabla T, \overline{S} + \xi_i \cdot \nabla S) \right]$$

- ξ given by an AR-1 process

- Tested in ORCA ~2° horizontal resolution model
- Improved bias in separation latitude of Gulf Stream, Kuroshio Current
- $2p$ evaluations of nonlinear EOS
Winter MLD

Control

deBoyer Climatology