ENSO-Driven Suppression of Interannual Atmospheric Variability Over North America

Margaret Sutton, and Sarah Larson
North Carolina State University, Raleigh, NC;
The Importance of ENSO teleconnections

• Purpose is to show the atmospheric circulation and terrestrial impacts due to ENSO

• ENSO drives anomalous deep convection and latent heat release (Bjerknes, 1969)

• Perturbing global atmospheric circulation by Rossby wave train propagation (Ropelewski and Halpert, 1986)

• ENSO teleconnections effects temperature and precipitation globally (Barnston, 2014)

• These impacts can enhance the risk of natural disasters and limit natural resources (Guimarães Nobre et al, 2019)

• It is important to understand climate without the presence of ENSO, in order to better understand ENSO’s impacts
• ENSO Composite anomalies (Deser et al., 2018)
 - 18 El Nino – 14 La Nina events during 1920-2013
 - 90% CI applied, Stippled regions are insignificant

![Map showing SAT anomalies](Obs)

![Map showing precipitation anomalies](Obs)
Common methods of removing ENSO

• Removing ENSO through linear regression
 - ENSO contains nonlinearities (Frauen et al., 2014)

• Removing the signal from the interannual (2-6 years) frequency band
 - ENSO potentially has a low frequency signal (Wittenberg, 2015)

• Assuming that the Nino3.4 SST index is strictly an ENSO signal
 - Tropical instability waves (Tian et al., 2018)
 - Subtropical influences (e.g., thermally coupled modes; Larson et al. 2018)

• Defining the first Principle Component and assuming this is encompasses all of ENSO variability.
 - Lagged response to ENSO (Compo and Sardeshmukh, 2010)
Method

- Suppression of the dynamical process that supports ENSO variability
- Bjerknes Feedback refers to the positive feedback loop between the ocean and atmosphere that reinforces the initial SST anomaly
- This experiment was done using a climate model due to the inability to remove the influence of the Bjerknes feedback in observational data
Method

• NCAR CESM1-CAM4 is a fully coupled climate model
 - Present-day forcing, year 2000
 - Nominal 1° x 1° resolution

• CTRL: Control Experiment, simulates Earth’s climate system

• NoENSO: Ocean is decoupled from anomalous wind stress in the tropical Pacific → short circuits the Bjerknes feedback
 → eliminates ENSO variability
$$\tau_{total} = \alpha(\tau') + \bar{\tau}$$

Deactivates the Bjerknes Feedback

$$\tau_{total} = 0.0 \times (\tau') + \bar{\tau}$$

Similar to the CTRL

$$\tau_{total} = 1.0 \times (\tau') + \bar{\tau}$$

More Information: (e.g., Larson and Kirtman 2015, Larson et al. 2018)
• The largest anomalies in the Equatorial Pacific are found during the December – January – February months.

• Nino3.4 Region (5°N-5°S, 170°W-120°W)

• Niño3.4 Index is used to categorize ENSO events using a ±0.5°C threshold.
Monthly anomalies are calculated using:

\[a'(x, y, t)_{CTRL} = a(x, y, t)_{CTRL} - \bar{a}(x, y, t)_{NOENSO} \]
\[a'(x, y, t)_{NOENSO} = a(x, y, t)_{NOENSO} - \bar{a}(x, y, t)_{NOENSO} \]

NoENSO reference climatology is used
- Asymmetries between ENSO events
- El Niño is stronger than La Niña; projects onto the mean-state
• CTRL run produces large anomalies in the Nino3.4 Index
• NoENSO run dampens the majority of the variability
Percent difference is used to compare the CTRL run with the NoENSO run.

Goal: ENSO-driven impacts on the atmospheric circulation.

\[
\text{Percent Difference} = \left(\frac{\sigma^2_{\text{CTRL}} - \sigma^2_{\text{NoENSO}}}{\sigma^2_{\text{NoENSO}}}\right) \times 100
\]
ENSO enhances variability where red

- ENSO drives variability globally
- Particularly in the Equatorial Pacific and Indian Oceans

So, how does ENSO impact the Atmospheric Circulation?
Significance of the Suppression Zone

- Similar spatial pattern
- Large variance over the US and near the Aleutian low
The node between the ENSO-driven anomalous dipole results in reduced variability when ENSO is included.
• Maximum of the Suppression zone is ~ 31% at 96°W
How does the suppressed upper level atmospheric circulation impact the surface?
ENSO-Driven Suppression of Precipitation Variability

- ENSO increases variability in the southeast US by about 60%
- ENSO suppresses more than 30% of variability south of the Great Lakes
- Region of large interannual variability
• Focusing on the Northern US region where surface temperature variability is large
• ENSO suppresses more than 20% of variability in the Northern US
Suppressed Zones impact on the Surface

- Suppressed precipitation is to the east of the upper level suppression
- Suppressed surface temperature is to the north of the upper level suppression
- Future Work:
 - Distinguishing which phase is contributing more to the suppressed regions
 - Looking into the different flavors of ENSO to evaluate their contribution
Conclusion

- ENSO increases variability in the atmospheric circulation over the western and southern regions of the United States.
- ENSO suppresses variability in the atmospheric circulation over the Northern United States.
- ENSO forces an anomalous dipole over the North American Continent. The "Suppression Zones" are located where ENSO anomalies are zero.
- The atmospheric suppression has terrestrial impacts through precipitation and temperature.
- With a changing climate, ENSO events have been predicted to change in amplitude and frequency, which may impact the strength and frequency of ENSO teleconnections. (Liberto, 2018) (Meehl and Teng, 2007)

Email: mtsutton@ncsu.edu
Twitter: @mtsutton22