Sea ice variability across timescales in CESMx and observations

Ed Blanchard Wrigglesworth
(University of Washington)

acknowledgements:
Qinghua Ding (UC Santa Barbara)
Aaron Donohoe
Jen Kay
PCWG/NCAR (Marika Holland, Dave Bailey, Pat Callaghan)
Investigate coupling of sea ice/atmos at ‘short’ timescales (sub-monthly)

These timescales have been less studied than seasonal/annual/decadal

But important to stakeholders, likely can have high forecast skill of atmos/sea ice

Can be a ‘clean’ timescale to study sea ice/atmos coupling (can ignore ocean), also more degrees of freedom in observations
Models too persistent in Arctic (especially winter) mixed in Antarctica
High frequency variability of sea ice

Standard deviation of high-filtered SIE timeseries (3 to Y-axis days)

Arctic
High frequency variability of sea ice

Standard deviation of high-filtered SIE timeseries

Antarctica
High frequency variability of sea ice

Distributions of standard deviation of high-filtered SIE timeseries for 3-30day variability
High frequency variability of sea ice

Standard deviation of regional high-filtered SIE timeseries

Arctic: \((\text{obs-model mean})/\text{obs} \times 100\%\)

=no sea ice var
High frequency variability of sea ice

Standard deviation of regional high-filtered SIE timeseries

Antarctic: \(\frac{(\text{obs-model mean})}{\text{obs}} \times 100\% \)

= no sea ice var
Results part I

CESM models capture inter annual variability and mean state reasonably well, but show too little variability in winter at sub-monthly timescales both in the Arctic and Antarctica.

This bias is seen at the regional level.

Is the bias originating in the atmosphere? in atmosphere/sea ice coupling? or in sea ice model? (missing mechanisms)

Part II

Nudge CESM1-CAM5 to observed winds, see what happens.
Part II

Nudge CESM1-CAM5 to observed winds, see what happens

Nudge U and V winds to 6-hr ERA Interim, 1979-2018

Over 45N-90N and 45S-90S (in same run)

Take CESM-LENS initial conditions from 1980, run with same forcing as CESM-LENS
Annual SIA

Antarctica

- $r = 0.28$
- $r_{\text{detrended}} = 0.60$

Arctic

- $r = 0.88$
- $r_{\text{detrended}} = 0.80$

Legend:

- CESM-LENS mean
- CESM Nudged
- Obs
Trends

Antarctica trends (10^6 km2/yr)

Arctic trends (10^6 km2/yr)
Interannual variability
Interannual variability

Antarctica Sep
- $r=0.27$
- $r_{\text{detrended}}=0.52$

Arctic Sep
- $r=0.92$
- $r_{\text{detrended}}=0.80$

Antarctica Mar
- $r=0.42$
- $r_{\text{detrended}}=0.52$

Arctic Mar
- $r=0.38$
- $r_{\text{detrended}}=0.72$
Influence of initial conditions on trends

Minimal influence of 1979 ICs
Results part II

Observed winds help explain interannual variability, but not trends

Arctic better explained than Antarctica (why? reanalysis winds too uncertain in Antarctica, or Antarctic sea ice inherently less constrained by winds? Or model physics better in Arctic than Antarctica?)

40-year Trends not influenced by ICs (can’t explain positive Antarctic trend)