How tropical Pacific sea surface cooling enhanced Arctic sea ice melt from 2007 to 2012

Ian Baxter¹,
Qinghua Ding¹, Axel Schweiger², Michelle L’Heureux³, Stephen Baxter³, Tao Wang⁴,⁵, Qin Zhang³, Kirstin Harnos³, Bradley Markle¹, Daniel Topal¹,⁶, Jian Lu⁷

¹.Department of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
².Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, 98105, USA
³.NOAA Climate Prediction Center, College Park, Maryland 20740, USA
⁴.Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
⁵.NASA Goddard Space Flight Center, Greenbelt 20771, Maryland, USA
⁶.Department of Meteorology, Eötvös Loránd University, H-1117 Budapest, Hungary
⁷.Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Sea Ice Sensitivity

- Rosenblum & Eisenman (2017)
 - Models too insensitive?

- Change in Arctic sea ice
 - Vs.

- Change in global mean temperature
Sea Ice Trends

Trends anchored in 2007-2012 period
Anticyclonic circulation warms the Arctic via adiabatic processes

Positive JJA geopotential height (m)

JJA Specific Humidity (g/kg)
Linear Trends (79-06)

Anomalies (07-12 minus 79-17)
Cool Pacific-warm Arctic phase.
Enhanced melting.

Anomalies (13-17 minus 79-17)
Warm Pacific with weak Arctic cooling.
Correlation map between detrended JJA SST and September sea ice area

a Stippling indicates statistical significance at the 95% confidence level
Fast melting composite CESM1

a) Time series of 6-yr mean September sea ice area

b) Sep sea ice

c) JJA Z200

d) Zonal mean variables
Summertime tropical-Arctic teleconnection in CESM1
6-yr non-overlapping periods (15 lowest periods)

Z200 (shading)
Wave activity flux (vectors)

Precipitation (contour)
SST (shading)
Fast melting composite CESM2

a Time series of 6-yr mean September sea ice area

b Sep sea ice
c JJA Cloud Fraction
d JJA Temp & Height
Summertime tropical-Arctic teleconnection in CESM2

6-yr non-overlapping periods (15 lowest periods)

Z200 (shading)
Wave activity flux (vectors)

Surface Temperature (red/blue)
What happened in 2019?

Domain: 60-90N
Nudging Factor: 0.5

Bottom of nudging: ~800 hPa

Adiabatic descent
radiation
Sea ice
Export

Total Sea Ice Extent (million km²)

Mean Tropospheric Temperature (K, 300-1000 hPa)
Summary

• Sea Ice Sensitivity should take into account connections between the Arctic and the rest of the globe (tropical Pacific)

• Tropically-driven atmospheric teleconnections partially enhanced melting from 2007 to 2012 in combination with anthropogenic forcing.

• A better understanding of this tropical-Arctic teleconnection and its effects is important for the prediction of sea ice loss in global climate model simulations, especially the cloud response.