Impact of Land use and Land cover Change on Regional Climate over the Contiguous United States using Variable-Resolution CESM2

Anjana Devanand¹,³, Maoyi Huang¹, David Lawrence², Colin Zarzycki²,⁴, Zhe Feng¹, Peter Lawrence²

(1) Pacific Northwest National Laboratory
(2) National Center for Atmospheric Research
(3) Indian Institute of Technology Bombay
(4) Penn State University

12 February 2019
CESM Land Model and Biogeochemistry Working Group Meetings
National Center for Atmospheric Research - Boulder, Colorado
It is essential to better represent the influence of LULCC on Earth system processes

- LULCC interacts with local, regional, and global Earth system processes. The resulting ecosystem responses are a mix of biogeophysical and biogeochemical feedbacks to climate change;

- Combined LULCC effects account for 40% ± 16% of the human-caused global radiative forcing from 1850 to present day (high confidence)
Background
VR-meshes in Global Models

➢ **LULCC relevant processes:** urban centers, cropping systems and irrigation, topographic and LU patterns

➢ **Limited area models:** traditionally used to study regional impacts of LULCC needs lateral boundary conditions

➢ **VR meshes in global models:** new alternative that can be used to study LULCC impacts at finer resolutions, feasible to perform decadal global simulations at 10-30km resolutions

Regionally refined simulations:

- Are Computationally Feasible
- Reproduces the global climatology of the uniform low resolution simulations (Zarzycki et al., 2015), without the need for retuning the global model (Gettelman et al., 2018)
- Captures high frequency, high resolution statistics over region of grid refinement (Gettelman et al., 2018)
Community Earth System Model 2 (CESM2) - VR Configuration

- CESM2-SE with regional refinement to $^{1/8}\circ$ over the Contiguous United States (CONUS)
- Land-atmosphere simulations with CAM6-SE and CLM5.0 (BGC and crop modules turned on)
- Historical AMIP type simulations with prescribed SST, atmospheric chemistry and solar variations of 1980-2015
- Two alternate LULC data:
 - Preindustrial : Year 1850
 - Present day : Year 2000
- Scale Experiments:

Table 1. 2000 vs. 1850 LULCC experiments

<table>
<thead>
<tr>
<th>Grid combinations</th>
<th>Atmosphere</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne30 – ne30</td>
<td>1° (~111 km)</td>
<td>1° (~111 km)</td>
</tr>
<tr>
<td>ne 30 – ne 240</td>
<td>1° (~111 km)</td>
<td>0.125° (~14 km)</td>
</tr>
<tr>
<td>ne 240 – ne 240</td>
<td>0.125° (~14 km)</td>
<td>0.125° (~14 km)</td>
</tr>
</tbody>
</table>

Compset: FHIST using CAM6_CLM5_BGC-Crop

Grid: ne30 & ne240CONUS

Source: Lauritzen et al., 2018 (JAMES)

15 years each 1984-1998
Science questions

➢ Can simulations of regional climate over CONUS be improved using high-resolution simulations?

➢ What is the response of regional climate to LULCC in high resolution simulations compared to more conventional resolution ESM simulations?

➢ What is the effect of LULCC on warm season precipitation over Central United States?
Warm Season biases in spatial patterns of Rainfall

OBS
Mean Rainfall

1° atm - 1° Ind

Model
Bias

⅛° atm – ⅛° Ind

NLDAS Apr-Jun Rainfall (mm/day)

NLDAS Jul-Aug Rainfall (mm/day)
Warm Season biases linked to Mesoscale Convective Systems (MCSs) over the Central United States

- Organized convective systems that last 10-24h & propagate eastward
- MCS structure consists of convective towers and large areas of stratiform rainfall
- MCSs account for 40-60% of warm season precipitation over Central US (east of the Rocky Mountains)
- Models with parameterized convection have difficulty capturing MCSs over Central US, resulting in low precipitation bias
Regional Precipitation

Higher Resolution -> Better precipitation simulation during April-Jun

Overestimation of precipitation - Enhanced at high resolution

Warm season dry bias persists at all resolutions

Simulated precipitation in line with observations
Regional Precipitation: Diurnal cycle

- Higher resolution in land model increases precipitation amount
- Higher resolution in atmospheric model further changes the phase of the precipitation diurnal cycle
LULCC Changes over CONUS: 2000 - 1850

- CROP on Grid cell (%)
 - LU 2000 - 1850

- GRASS on Grid cell (%)
 - LU 2000 - 1850

- TREE on Grid cell (%)
 - LU 2000 - 1850

Grass to crop

Tree to crop

Irrigated CROP on Grid cell (%)

- LU 2000 - 1850

Increase in cropland over Midwest
Majorly unirrigated
Results: LULCC Induced Changes in PRCP and T-2m

PRCP Changes
Increase over Central U.S.

T-2m Changes
Near surface cooling

April

1° atm - 1° land
1° atm – ½° land

LU 2000-1850 Apr PRECT
LU 2000-1850 Apr PRECT
LU 2000-1850 Apr Total Rain

May

1° atm - 1° land
1° atm – ½° land

LU 2000-1850 May PRECT
LU 2000-1850 May PRECT
LU 2000-1850 May Total Rain

Increase over Central U.S.
Near surface cooling
Results
LULCC Induced changes in Surface fluxes

LH
Increase with start of growing season

SH
Decrease - Pattern change across months
Results
Changes of LH Flux and LAI in May

May

1° atm - 1° land
1° atm – ⅛° land
⅛° atm - ⅛° land

Latent heat flux increases – comes from vegetation transpiration – due to increase in crop LAI
Results
Mesoscale Convective System (MCS)–Like Features

MCS-like features are tracked using:

• Precipitation Feature tracking algorithm developed by Feng et al. 2016
 - Based on characteristics of MCS rainfall in observations
• Uncertainty: due to 3 hourly model outputs used for feature tracking

• $1^\circ \text{ atm} - 1^\circ \text{ land}$ & $1^\circ \text{ atm} - \frac{1}{8}^\circ \text{ land}$: No trackable features
• $\frac{1}{8}^\circ \text{ atm} - \frac{1}{8}^\circ \text{ land}$: MCS-like features exist
• But fewer tracks that seen in observations
 - Could be due to 3 hourly temporal resolution of output or deficiency of model in simulating these systems

Source: Prein et al. 2017
Results
LULCC Induced differences in MCS-Like Features: $\frac{1}{8}^\circ$ atm - $\frac{1}{8}^\circ$ land

Mean LU2000 Rainfall

Changes LU2000-LU1850

Total precipitation changes over the Southern Great Plains may come from changes in MCS-like precipitation
Summary & Future Work

➢ Finer resolution simulations represent the precipitation over Midwest better

➢ LULCC leads to:
 ➢ Over the Central, increase in cropland-> increase in LAI->increase in LH->surface cooling;
 ➢ Apr-May precipitation increase over Central US, some patches of decrease in May
 ➢ Changes over Southern Great Plains in finer resolution simulations comes from changes in MCS-like features there

➢ Need to output precipitation at 1-hourly to have more confidence on MCS-tracking.

➢ Plan to look at mechanisms behind the LULCC-induced precipitation changes
Thank You

DOE Office of Science
Multisector Dynamics,
Regional and Global Model Analysis,
Earth and Environmental System Modeling Program
New Thresholds
MCS Rain (mm/d)
Apr-Aug by month

Default Thresholds
MCS Rain (mm/d)
Apr-Aug by month
MCS Frequency

No. of timesteps when MCS exists/Total number of timesteps – calculated using MCS mask to set a 1/0 flag

New Thresholds

MCS Frequency (fraction)

Apr-Aug by month

Default Thresholds

MCS Frequency (fraction)

Apr-Aug by month
PBLH

LU 2000-1850 Apr PBLH
LU 2000-1850 May PBLH

LCL

LU 2000-1850 Apr LCL
LU 2000-1850 May LCL