A Spring View of ENSO Diversity

Shang-Ping Xie1
with Q.H. Peng2,1, Y. Kamae3, X.T. Zheng4, D.X. Wang3
1UCSD, 2SCSIO, 3U Tsukuba, 4OUC

Anza-Borrego Desert State Park, CA
March 2017
Sept-Nov

Bjerknes feedback
- Westerly wind anomalies in the western basin
- Maximum warming in the eastern basin ← Eq. wave adjustment.
- Weak precip response over the cold tongue ← cool mean SST
Obs. Precip., SST & wind
120-115°W

FMA: Double ITCZ & weak southerlies
EOF of FMA rainfall

a Precip, SST and Wind

- Latitude (°)
 - 15N
 - 10N
 - 5N
 - Eq
 - 5S
 - 10S
 - 15S

- Longitude (°)
 - 140W
 - 120W
 - 100W
 - 80W

b

- Nino3
- PC1
- r=0.77

EOF1
- Extreme El Nino
- No La Nina
ENSO evolution: NDJ

Humidity & circulation

Precip (shaded) & mean SST (contours)

SST (shaded), latent heat flux (contours) & sfc wind vectors
ENSO evolution: FMA

Humidity & circulation

Precip (shaded) & mean SST (contours)

SST (shaded), latent heat flux (contours) & sfc wind vectors

Deep circulation
In the far eastern Pacific, the zonal wind vanishes and it is the southerlies that maintain the upwelling cooling, slightly south of the equator (centered at 1-2S) in the open ocean, and along the coast.
Extreme El Niño

Anomalies of: precipitation (color shading), SST (contours) and wind (vectors)

Slow decay

Westerly wind intrusion into EP

Convective heating in EP

Reduced upwelling

EPID

Rapid decay

Upwelling south of equator

Anomalies of: precipitation (color shading), SST (contours) and wind (vectors)
Extreme El Niño of 1997-98 as observed by 125⁰W, Eq. buoy

- Diminishing easterlies in early ’98 → intrusion of wind anomalies.
- By April ’98, thermocline depth has returned to normal.
- SST did not decrease until the easterly trades returned → importance of local wind anomalies

Summary

FMA mean state:
Double ITCZ & seasonal eq. warming

Extreme El Nino

Enhanced eq. convect.
EP Bjerknes

Suppressed eq. upwelling
Slow decay
Eastern Pacific ITCZ dipole (EPID): a WES mode in FMA when the mean state is symmetric (and atmospheric feedback is strongest).

- Represents interannual variability in relative intensity of the double ITCZ.
- EPIC is preceded by moderate ENSO and causes the rapid termination of moderate ENSO.
- Extreme El Nino decays slowly because of local Bjerkness feedback in the eastern Pacific, by causing deep convection there.
EOF modes of FMA rainfall variability in CESM (dx=1 deg)