NW Atlantic warming under climate change: new simulations with high-resolution CESM

Justin Small
John Truesdale, Susan Bates, Gary Strand,
Jerry Meehl, Don Wuebbles

Acknowledging: Mike Alexander, Andrew Thomas, Frank Bryan,
Laurent Terray, Ian Grooms, Adam Phillips
NW Atlantic SST: sensitivity to ocean resolution

LOW-RES OCEAN SST BIAS

SST bias, CESM with 0.25deg atmosphere, 1deg ocean. Relative to Reynolds (2007). Annual mean

CHANGE DUE TO HIGH-RES OCEAN

SST difference, CESM with 0.25deg atmosphere: 1deg. Ocean minus 0.1deg ocean.

Similar improvement in North-west Pacific/Kuroshio and in Southern Ocean/ACC

Sign convention – matching colors (top and bottom) implies improvement with resolution.
NW Atlantic SST: sensitivity of climate change to ocean resolution

SST difference (averaged over years 60-80) between 1% per year CO₂ increase run and preindustrial control. Bottom right is high-resolution model CM2.6. Model resolutions are labelled. Note enhanced warming in NW Atlantic in CM2.6.

From Enhanced warming of the Northwest Atlantic Ocean under climate change
Vincent S. Saba¹*, Stephen M. Griffies², Whit G. Anderson², Michael Winton², Michael A. Alexander³, Thomas L. Delworth², Jonathan A. Hare⁴, Matthew J. Harrison², Anthony Rosati², Gabriel A. Vecchi² and Rong Zhang² 2016, JGR
NW Atlantic SST: observations of warming

• Observed warming off US East coast in recent decades
 – Burrows et al 2011, Pershing et al 2015 – link to Gulf Stream and PDO
 – Thomas et al 2017 (submitted), Gulf of Maine lengthening of warm season, partly related to Gulf Stream index (more northern)

• Warming of western boundary currents
 – Wu et al 2012- WBCs warm, shift

• Effect on fisheries
 – E.g. Cod stock reduction (Pershing et al 2015
Pershing et al. 2015, Science. Sea surface temperature trends from the Gulf of Maine and the global ocean. (A) Daily (blue, 15-day smoothed) and annual (black dots) SST anomalies from 1982 to 2013, showing the long-term trend (black dashed line) and trend over the decade 2004–2013 (red solid line). (B) Global SST trends, 2004–2013. The Gulf of Maine is outlined in black. (C) Histogram of global 2004–2013 SST trends, with the trend from the Gulf of Maine indicated at the right extreme of the distribution.
Aims

• To determine whether enhanced US East coast warming is seen in high resolution CESM
 – Mini high-res MIP
• Compare with an ensemble of standard resolution models
 – CESM-LE
• Investigate the relationship to AMOC proposed by Saba et al
 – Role of Labrador Current
Climate change scenario with High-resolution CESM

- NSF allocation: High Resolution Earth System Modeling for International Climate Assessment Using Blue Waters Capabilities
- PI: Don Wuebbles (University of Illinois)
 - The primary NCAR collaborators and co-PIs: Drs. Warren Washington, Jerry Meehl, Justin Small, and Joseph Tribbia
- High-resolution CESM
 - CAM5.2 SE, 0.25deg
 - POP2, 0.1deg
 - CESM1.0.4, Small et al 2014, JAMES
- Branching off from year 50 of the previous high resolution control run (year 2000 conditions),
 - ran with historical conditions for years 2001-2005,
 - then with the RCP8.5 scenario for 2006-2050.
- Run on Blue Waters supercomputer (University of Illinois)
 - Accompanying simulations include 0.25deg atmosphere, 1deg ocean
SST change, in first half of 21st C

CESM1-high resolution RCP8.5

Compare with CM2.6: 1\%CO\textsubscript{2}

CM2.6 is 0.5deg atmosphere, 0.1deg ocean.

Qualitative agreement comparing the RCP8.5 to the 1\%per/yr simulations. North-east USA coast is a hotspot of warming.
Focus on US East coast: surface

CESM1: SST change

CESM1: Surface salinity change

CESM1: SSH change

CM2.6: Sea surface temperature change (°C)

CM2.6: Sea surface salinity change (psu)

CM2.6: Sea level change (cm)

2006-2015 to 2041-2050
Focus on US East coast: at depth

CESM1: Temperature @155m

CESM1: Salinity @155m

Note: CESM show values at 155m, CM shows values at ocean bottom.
What about climate model drift?

CESM1 RCP8.5: SST change

Control run does have slightly enhanced warming off US East coast but much weaker
...and natural variability

Some randomly selected differences of decades in control run
Changes to Labrador Current, Gulf Stream

Saba et al. hypothesise that weakening of AMOC (later slides) leads to retreat of Labrador current, northward shift of Gulf Stream, replacement of cold Labrador slope water by warm Atlantic slope waters (Saba et al. 2016)
Changes to Labrador Current, Gulf Stream

From Saba et al

Labrador current has less intrusion into East coast waters

CESM1: DIFFERENCE 2041-2050 minus 2006-2015 in 155m currents

CESM1: As left but DIFFERENCE 2041-2050 minus 2006-2015 in 155m ZONAL VELOCITY
Relationship to AMOC

Relationship of NW Atlantic coastal salinity (left) and temperature (right) (red curves) with AMOC (black curves). Top panels are from pre-industrial control, bottom are from double CO2 run.

All Results from Enhanced warming of the Northwest Atlantic Ocean under climate change Vincent S. Saba¹,*, Stephen M. Griffies², Whit G. Anderson², Michael Winton², Michael A. Alexander³, Thomas L. Delworth², Jonathan A. Hare⁴, Matthew J. Harrison², Anthony Rosati², Gabriel A. Vecchi² and Rong Zhang² 2016, JGR
AMOC, HI-RES CESM

Right: From Small et al 2014 AMOC in high-res CESM control (solid) and standard CESM (thin), year 2000 conditions.

Left AMOC in high-res RCP8.5 in CESM. The run is initialized from year 50 of the high-res control (solid line above) and the two figures are lined up by equivalent year. In the RCP8.5, an initial increase in AMOC to year ~ 2012 is followed by a decrease. In contrast, in the control the AMOC keeps rising. The temperature differences in previous slides (2041-2050 minus years 2006-2015) show low AMOC minus high AMOC periods, as in Saba et al. 2016.

AMOC defined as maximum overturning streamfunction in Northern Hemisphere below 500 m depth
Comparison with CESM-LE

• Linear trend 2006-2050

• Regression SST on AMOC (see later)
High-resolution CESM trend 2006-2050

°C

/50years
Aims

• To determine whether enhanced US East coast warming is seen in high resolution CESM
 – Yes
• Compare with an ensemble of standard resolution models
 – Ensemble mean of CESM-LE does not show enhanced warming
 – But a hint that some members have enhancement
• Investigate the relationship to AMOC proposed by Saba et al
 – Labrador Current, Gulf Stream changes consistent with Saba et al.
 – AMOC – US East coast SST regressions consistent with Saba et al.

Conclusions
Discussion points

• Does high-res CESM have warmer temps due to strong AMOC decline (as opposed to resolution per-se)?
 – Are the mean values of AMOC, and AMOC decline, in high-res CESM realistic?

• How do changes in SST affect extremes of wind, precipitation?

• What drives the enhanced warming – atmosphere factors vs oceanic advection

• Can we use natural variability of high-res control to estimate variability of 50 year trends (Thompson et al. 2015)?
AMOC-SST-regressions
SST regressed on AMOC, no trends removed. Two example CESM-LE members. AMOC decline is similar (bottom plots) but SST trends off US East coast differ.
Results from High-res CESM RCP8.5

SST difference between years 2041-2050 and years 2006-2015 of new high-res RCP8.5 scenario with CESM. Note enhanced warming in NW Atlantic (see also next slide)

Sea surface height difference between years 2041-2050 and years 2006-2015 of new high-res RCP8.5 scenario with CESM. Note enhanced SSH rise in NW Atlantic.
Surface temperature change

Net surface heat flux change. Positive values warm ocean
Changes to mixed layer depth

MLD defined on 0.03kg/m³ criterion.
How is AMOC defined
Future work

• Look at seasonal differences
• Look at duration of summer (Andy Thomas – ask for lecture slides)
• Close up on SST, and current change in N. Atlantic
• Extremes in sea level and SST, winds