Understanding the Causes and Implications of Enhanced Seasonal CO$_2$ Exchange in Boreal and Arctic Ecosystems

Brendan Rogers and Gretchen Keppel-Aleks

Co-I's: Scott Goetz, Sue Natali, Christopher Schwalm, Amber Soja
Collaborators: Bruce Cook, Matt Hansen, John Kimball, Jeffrey Masek, Bill Riley, Kevin Schaefer
Motivation & Background
Motivation & Background

(Graven et al., 2013)
Motivation & Background

(Zhao and Zeng, 2014)
Motivation & Background

(Murray-Tortarolo et al., 2013)
Motivation & Background

(Forkel et al., 2016)
We will conduct a *bottom-up, data-driven* model attribution study.
Hypotheses

<table>
<thead>
<tr>
<th>Growing season productivity</th>
<th>Winter respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate (summer warming)</td>
<td>Climate (winter warming)</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Productivity (labile substrates)</td>
</tr>
<tr>
<td>N deposition</td>
<td>Snow (cover and depth)</td>
</tr>
<tr>
<td>Veg-tundra</td>
<td>Vegetation</td>
</tr>
<tr>
<td>Veg-boreal-cover</td>
<td>Delayed gas diffusion</td>
</tr>
<tr>
<td>Veg-boreal-deciduous</td>
<td></td>
</tr>
<tr>
<td>Veg-boreal-age</td>
<td></td>
</tr>
<tr>
<td>Permafrost (plant-available N & H$_2$O)</td>
<td></td>
</tr>
</tbody>
</table>

1901-2011 Temperature Trend
Benchmarks

Atmospheric CO$_2$

- Develop benchmarks from CO$_2$ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO$_2$ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV (among others, e.g. ILAMB)
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms
Benchmarks

Atmospheric CO$_2$

• Develop benchmarks from CO$_2$ flask data, total column observations, and aircraft campaigns
• Use GEOS-Chem to transport CO$_2$ tracers
• Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
• Challenge to separate meaningful changes from model biases in diagnostics
• Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Keppel-Aleks et al., 2013)
Benchmarks

Atmospheric CO₂

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Keppel-Aleks et al., 2013)
Benchmarks

Atmospheric CO₂
- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

Additional benchmarks
- Gridded flux products (upscaled FLUXCOM, MODIS, TCF, SMAP L4_C, SIF)
- Synthesis of *in situ* seasonal fluxes (tundra, boreal forest), focus on functional relationships
- Changes to arctic-boreal vegetation and fire regimes
Changes to arctic-boreal landscape

- Focus on landscape-level, ecosystem-type attributes, especially as linked with disturbance
 - Tractable given current & expected data sets
 - Directly relate to CLM & other land models
 - Should impact seasonal CO$_2$ fluxes (Forkel et al., 2016)
Changes to arctic-boreal landscape

Fire Databases

North America

Eurasia-Russia
Changes to arctic-boreal landscape
Fire Databases

North America

Eurasia-Russia

- New AVHRR-based continuous fields (0.05°, 1981-present, Hansen) = changing PFTs
- Burned area + PFTs = severity, mortality, succession trajectories, and evolving stand age
- Additional constraints on changing productivity vs. vegetation structure from GIMMS\textsubscript{3g} products
- Regional validation with ABoVE datasets
Potential model developments

- Optimize boreal-arctic PFT productivity, with a focus on post-fire trajectories
- Incorporate new mechanistic representation of respiration in frozen soils, accounts for thin water films surrounding soil particles (Schaefer and Jafarov, 2016)
- Add CO$_2$ diffusion through the soil and root conductive tissue as has been done for CH$_4$ (Riley et al., 2011)
- Add heat from exothermic respiration into soil column
- Play with phenology routines (e.g., Forkel et al., 2014; Chen and Che 2016) to address early spring GPP bias
<table>
<thead>
<tr>
<th>Growing season productivity</th>
<th>Winter respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate (summer warming)</td>
<td>Climate (winter warming)</td>
</tr>
<tr>
<td>CO₂</td>
<td>Productivity (labile substrates)</td>
</tr>
<tr>
<td>N deposition</td>
<td>Snow (cover and depth)</td>
</tr>
<tr>
<td>Veg-tundra</td>
<td>Vegetation</td>
</tr>
<tr>
<td>Veg-boreal-cover</td>
<td>Delayed gas diffusion</td>
</tr>
<tr>
<td>Veg-boreal-deciduous</td>
<td></td>
</tr>
<tr>
<td>Veg-boreal-age</td>
<td></td>
</tr>
<tr>
<td>Permafrost (plant-available N & H₂O)</td>
<td></td>
</tr>
</tbody>
</table>
We’re looking for good postdocs!!

Brendan Rogers
brogers@whrc.org

Gretchen Keppel-Aleks
gkeppela@umich.edu
Benchmarks

Atmospheric CO₂

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Keppe-Aleks et al., 2013)
Benchmarks

Atmospheric CO₂
- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Liptak et al., in press)
Benchmarks

Atmospheric CO$_2$

- Develop benchmarks from CO$_2$ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO$_2$ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Liptak et al., in press)