ACME Progress

Peter Caldwell, Phil Rasch, Shaocheng Xie, Chris Golaz, Dave Bader, Rich Neale, and the rest of the ACME team

AMWG Workshop 2/27/17
ACME = DOE’s new “high-resolution” climate model

- project started in spring 2014
- ACME split off CESM (at CAM5.3.35 tag)
- Uses CLM4.5 for CMIP experiments (though lots of development is going on for nitrogen cycle experiments)
- ACME atm uses same parameterizations as CAM6: CLUBB, MG2, ZM, RRTMG, MAM4
  - code versions and tuning differ
On top of these parameterization changes, ACME:

- Uses 72 vertical layers in the atmosphere
- Always uses the spectral-element (SE) dycore
  - Much faster at high horizontal resolution and allows for regional refinement
- Uses totally new MPAS ocean and sea ice models
  - Faster at higher resolution
  - Includes prognostic ocean thickness important for sea level rise experiments

*Big changes like these unbalance compensating errors, inevitably resulting in initially degraded results*
Why a “High-Resolution” Model?

- High resolution is needed to capture topographic effects on rainfall (top row)
- and topography has an important effect on rainfall changes (bottom row)!

Fig: Precipitation over US from ACME v1 beta0 F1850 simulations at Δx=1/4° and 1° (top row). The bottom row shows the impact of increasing SST uniformly by +4K. Simulations are 5 yrs long and SST is prescribed from pre-industrial conditions.
Why High Vertical Resolution?

- With ~30 model levels, stratocumulus (left) and cirrus are often ≤1 model level thick. This makes capturing associated processes difficult.

- Using more vertical levels seems to raise stratocumulus cloud base in ACME, improving agreement with observations (though cloud mass tends to be smaller/worse... more later)

Fig: Liquid water content for SON average from ACME v2 beta0 years 101-130 and CESM2 run 125 yrs 100-120 for cell closest to 20S, 85W. Obs are from radiosonde data taken during the EPIC campaign (Oct 16-22nd, 2001).
Current Status

• Focus is still primarily on $\Delta x=1^0$, but:
  • Wuyin Lin has been very successful using CAPT to tune at $\Delta x=1/4^0$
  • We have done $1/4^0$ sensitivity studies (shown on previous slide)
  • We will try a $1/4^0$ coupled run next week

• We planned on freezing months ago...
  • because we want to make significant progress on the CMIP deck before our 3 yr review this June
  • but we’re still finding/fixing problems:
    • Problems in ocean mixing (excessive 2dz mixing)
    • River runoff issues due to problems with mapping files
    • land spinup was insufficient
    • Energy and water conservation needed help (See Kai’s talk)
    • coupled model crashes every 75 yrs or so (negative layer thickness in SE vertical remap or forcing height below plant canopy height)
    • and so on
Coupled Model Performance

- CESM2 run 125 is among the best CMIP5 models
- ACMEv1 is middle of the road – like CESM from a year ago?
- Both models struggle with 850 mb T
  - related to cold SST?

Fig: “Gleckler” et al (2008; JGR) diagram evaluating ACME beta0 and CESM2 run 125 coupled pre-industrial runs against CMIP5 models. Fig from Qi Tang.
SST

- ACME and CESM generally share similar biases
  - generally too cold
  - warm bias off west coasts
  - too warm over S Ocean

- ACME is colder in general
  - particularly in N Atlantic
850 mb T

• Both ACME and CESM are generally too cold (shown vs AIRS here, but true for all reanalyses as well)

• ACME is too warm over S Ocean, consistent with its greater SST bias there
Stratocumulus

• SWCF bias (relative to CERES-EBAF)
  • Much worse in ACME in Sc regions
• We are working on this
Precipitation

- PRECT bias (using GPCP obs)
- Similar biases:
  - double ITCZ (though CESM is much better)
  - dry Amazon/wet Andes
  - Too strong over Maritime Continent/Indian Ocean
- ACME generally worse
  - also wet over W Coast N America
Sea Ice

- Sea ice is stable and not outlandish

- There’s a bit too much ice in the Labrador Sea, but it is too thin to cause instability

Fig: Left: Northern hemisphere ice thickness. Top: northern-hemisphere-averaged ice area. Bottom: southern-hemisphere-averaged ice area. All plots from ACME v1 beta0 PI control simulation. From Milena Veneziani.
High Frequency Variability

- ACME does pretty well with MJO and other high-frequency modes

Fig: Time/space power spectra showing equatorially-trapped wave modes in CESM and ACME coupled runs. From Rich Neale.
Equilibration in ACME

The climate system *seems* happy to stay out of energy balance indefinitely

- This energy input doesn’t have much effect on surface temperature
  - This looks *similar* to CESM’s experience with CAM5-SE (due to wind stress changes in S Ocn)

**Figure:** global-average TOA net radiation (“RESTOM”) (left) and global-average surface temperature (“TS”) (right) from ACME v1 beta0 run

but the main reason for this behavior in ACME is different!
Uh-oh! Energy transfer from the atmosphere to the ocean aren’t consistent!

- hypothesis: water rains back onto the ocean at a colder temperature than it evaporates

\[
c_p ( \text{evap} \cdot T_{\text{evap}} - \text{precip} \cdot T_{\text{precip}}) = 0.33 \text{ W/m}^2
\]

⇒ much of this discrepancy comes from the atmosphere not keeping track of the internal energy of condensate
Sensitivity

• Equilibrium climate sensitivity (ECS) from a 150 yr abrupt4xCO2 run is **4.5 K**
  • the net feedback parameter from 5 yr F2000 and F2000+4K Cess runs is **-1.4 W/m2/K**
    • The range of CMIP5 net feedback values is -1.05 to -1.95 W/m2/K, so ACME is fairly typical
  • At $\frac{1}{4}^0$, the net feedback parameter is **-1.2 W/m2/K** (suggesting increased ECS at high resolution)

• The Total Adjusted Forcing (TAF, the TOA net radiation difference between F1850 and an F2000 run with 1850 SST) is **1.2 W/m2**
  • The the CMIP5 mean TAF was 1.7 W/m2 with $\sigma = 0.9$ W/m2, so ACME is on the low side of average (due to strong aerosol indirect effect)
  • At $\frac{1}{4}^0$, TAF is **1.9 W/m2** suggesting aerosol effects weaken at higher resolution, as found for CAM5 by Ma et al. (GRL 2015)

Fig: scatter plot of global-average TOA radiative and surface temperature changes (relative to 1850 control) after abruptly quadrupling CO2 in ACME v1 beta0 simulation. From Chris Golaz.
Conclusions:

- ACME has made some bold changes (increased vertical resolution, SE dycore, MPAS ocean and ice) and working out the resulting kinks will take some time.
- ACME only matured to the point where we can do coupled runs a few months ago, which puts us about a year behind CESM... and it shows
  - but ACME is already a middle-of-the-road CMIP5 model
  - we are still working through bugs and issues (so improvement is likely)
- Most biases are shared by both ACME and CESM, indicating that problems are structural rather than related to tuning.
Extra Slides
Equilibration in CESM2 run 125

- CESM starts at RESTOM near zero and stays there.
**ENSO**

**CESM 2.beta**

- ACME currently lacks ENSO
  - we are working to fix this

**V1. beta**

**Obs.**

Had (20th C)

-----

*Fig: Nino3.4 power spectrum (left column), autocorrelation (middle column), and seasonality (right column). From Rich Neale.*
Wind Stress

- Wind stress bias is fairly similar in both models
Ocean Heat Content

• CESM found that persistent imbalance when using the SE dycore came from wind stress differences over the Southern Ocean

• ACME was hoping that switching ocean models would solve the problem...

• We’re working on it...

Fig: an atmospheric scientist’s understanding of why the ocean is taking up heat. Ocean warming lat-height plot from an early (CESM1-like) version of ACME.
Tropical PMP

• adsf
High Lats

- adsf
Sea Level Pressure

• S Ocn bias consistent with 850 mb T?
500 mb Geopotential Height

• Using ERAI as obs
• not sure what to say
Impact of Vertical Resolution on Stratocumulus

- Experience in CESM is that vertical resolution does not explain Sc differences

Fig: SWCF from CAM5.5 with 60 layers (top) and 30 layers (bottom) don’t show much difference. Plots from Pete Bogenschutz.