An Improved Plant Nitrogen Cycle in the Community Land Model

Mingjie Shi, Joshua Fisher, Edward Brzostek, Richard Phillips

Land Model Working Group Meeting
March 4th 2015, NCAR, Boulder, CO
Motivation

• The role of nutrient availability in regulating net ecosystem production and ecosystem C use efficiency

• Accurate predictions of the land C sink and nutrient constraints captured by CLM

• Plant NPP allocation for N acquisition: up to 20% of NPP to both symbiotic and free-living microbes at the root surface to increase their access to N (Brzostek et al., 2015; Hobbie, 2006)

• BUT, CLM assumes that N is acquired at no C cost to plants!
1) How much N is taken up and what is the global distribution?

2) How does N acquisition from soil (directly through roots or from mycorrhizal symbionts), senescing leaves, and biological N fixation vary across seasonal transitions?

3) How does the C cost of N acquisition vary spatially and temporally?

4) How sensitive is the land C sink to a dynamic prediction of the C cost of N acquisition?
Methods

• The Fixation and Uptake of Nitrogen (FUN) model (Fisher et al., 2010; Brzostek et al., 2014) explicitly includes the C cost for N acquisition.

• FUN is grounded in optimal allocation theory whereby plants optimize the allocation of C used to acquire N from the soil (directly through roots or from mycorrhizal symbionts), senescing leaves, and biological N fixation.

 — Different C costs with different N returns are associated with each pathway, and those costs dynamically vary.

• FUN has been coupled into the Joint U.K. Land Environment Simulator (JULES) and to Noah-MP.
Methods

Model Structure

Total N Uptake

Passive Uptake

Active Uptake

Biological N Fixation

Re-translocation

NPP

NPP Optimization

Plant C:N

Cost Active Uptake

Cost BNF

Cost Re-translocation

Soil N

Root C

Soil Temperature

Leaf N

Transpiration

Cost Active uptake (and fine) root biomass (see Figure 1. [Diagram of N Fixation and Uptake]).

Table 1. Parameter Notation Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available C</td>
<td>A</td>
<td>kg C m$^{-2}$</td>
</tr>
<tr>
<td>Soil mineral N</td>
<td>S</td>
<td>kg N m$^{-2}$</td>
</tr>
<tr>
<td>Root Biomass</td>
<td>R</td>
<td>kg N m$^{-2}$</td>
</tr>
<tr>
<td>Leaf N</td>
<td>L</td>
<td>kg N m$^{-2}$</td>
</tr>
<tr>
<td>Plant C:N ratio</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Soil layer depth</td>
<td>D</td>
<td>m</td>
</tr>
<tr>
<td>Soil temperature</td>
<td>T</td>
<td>°C</td>
</tr>
<tr>
<td>Net primary production</td>
<td>NPP</td>
<td>kg C m$^{-2}$ d$^{-1}$</td>
</tr>
</tbody>
</table>

CLM provides FUN:

1) Available C
2) Soil mineral N
3) Root Biomass
4) Leaf N
5) Plant C:N ratio
6) Soil layer depth
7) Soil temperature
8) Transpiration

(Fisher et al., 2010)
Methods

FUN optimally allocates C to growth and to N uptake as a function of the N needed to support NPP and the integrated C costs across all of the pathways in the resistor network.
The C cost of fixation (Cost$_{\text{fix}}$; kg C kg N$^{-1}$) has been observed to range from 8 to 12 kg C kg N$^{-1}$ [Gutschick, 1981] as a function of soil temperature (T_{soil}; °C) [Houlton et al., 2008]. We combine the equation of Houlton et al. [2008] for normalized nitrogenase activity as a function of T_{soil} with the observed C cost range as constrained by Gutschick [1981]:

\[\text{Cost}_{\text{fix}} = s \exp(a + b/T_{\text{soil}}) + c/T_{\text{soil}} \]

where a, b, and c (−3.62, 0.27 and 25.15, respectively) are empirical curve-fitting parameters (unitless) given by Houlton et al. [2008]; s is −5 times the Houlton et al. [2008] scaling factor of 1.25 ($= -6.25$), which inverts the Houlton et al. [2008] equation and constrains it between 7.5 and 12.5 kg C kg N$^{-1}$ (Figure 2). The units of s may be considered kg C kg N$^{-1}$ °C$^{-1}$ for unit consistency.

The calculation of costs associated with N active (i.e., active uptake) requires scaling of root chemistry to more easily measureable plant physiological parameters. For example, Dickinson et al. [2002] require many root physiological parameters to calculate this rate. We simplify the calculation of the cost of active uptake (Cost$_{\text{active}}$; kg C kg N$^{-1}$) as

\[\text{Cost}_{\text{active}} = k_N N_{\text{soil}}/C_{18}/C_{19} k_C C_{\text{root}}/C_{18}/C_{19} \]

where k_N and k_C are both 1 kg C·m$^{-2}$ (see section 4 for derivation of k_N and k_C). As N_{soil} approaches zero, the energetic cost required to take it up tends to infinity (Figure 3a).

Cost of active nitrogen uptake (Cost$_{\text{active}}$) with range of cost of biological nitrogen fixation (Cost$_{\text{fix}}$) versus:

(a) soil nitrogen with low and high root biomass,
(b) root biomass with low and high soil nitrogen
(c) both soil nitrogen and root biomass. (Fisher et al., 2010)
Scatterplot of observed versus predicted N uptake FUN from the Free Air CO\textsubscript{2} Enrichment (FACE) experiments (Finzi et al., 2007), three agroecosystem sites from the Special Collaborative Project 179 (SCP179) international workshop data set (McVoy et al., 1995), three tropical montane sites in the Peruvian Andes (Tan, 2008), and an ancient woodland in the United Kingdom (Tan, 2008).
Stepwise improvement in model predictions of retranslocation that vary in mycorrhizal association from (a) FUN 1.0 to (b) FUN Resistors (c) FUN 2.0.
The dashed line indicates the 1:1 relationship.

(Brzostek et al., 2014)
CLM-FUN Coupling

- FUN was coupled with CLM4.5-BGC:
 - CNEcosystemDynMod.F90
 - CNFUNMod.F90
 - CNPhenologyMod.F90
 - CNDecompMod.F90
 - CNNStateUpdate1Mod.F90
 - CNAllocaAonMod.F90
 - CNNUptakeFixationMod.F90
 - CNNNStateUpdate1Mod.F90
 - CNNSummaryMod.F90
Results

How much N is taken up and what is the global distribution?

- The global total uptake is 1.2 Pg N yr$^{-1}$. Mycorrhizal uptake is the largest uptake pathway, followed by retranslocation, direct root uptake, and fixation.
Results

How much N is taken up and what is the global distribution?

- AM fungal uptake exceeds ECM fungal uptake globally.
- The AM and ECM uptake amounts are 80% and 20% of the total mycorrhizal uptake amount, respectively.
Results

How much N is taken up and what is the global distribution?

\[R_{\text{Nretrans}} = \frac{N_{\text{retrans}}}{N_{\text{dead,leafn}}} \]

where \(N_{\text{retrans}} \) is the total retranslocated N, and \(N_{\text{dead,leafn}} \) is the amount of N in dead leaves prior to senescence.

- CLM4.5-FUN2.0 produces dynamically varying retranslocation amounts (previously CLM gave a constant 50% retranslocation across all pixels).
- The global mean retranslocation ratio is 44%.
• The high N uptake regions are tropics and mid-latitudes in the north hemisphere.
• The fractions of the mycorrhizal uptake, direct root uptake, retranslocation, fixation, and passive uptake amounts are 63.8%, 9.6%, 19.3%, 7.2%, and 0.1% of the total N uptake amount, respectively.
Results

How does N acquisition from leaves, soil and air vary across seasonal transitions?

- Total N uptake does not meet total N demand for most of the year in all biomes.
- Evergreen broadleaf forest has the largest N uptake rate, which is 12.6 g N m\(^{-2}\) y\(^{-1}\).
- Deciduous needleleaf forest has the most met demand.
Results

How does the C cost of acquisition vary spatially and temporally?

• C spent on N acquisition is 5.1 Pg C yr\(^{-1}\) globally.
• The mycorrhizal and fixation used C amounts are 1.6 Pg C yr\(^{-1}\) and 2.5 Pg C yr\(^{-1}\), respectively; they are 31% and 50% of the global total used C amount, respectively.
• Grassland spends the most C on N acquisition per unit area; evergreen broadleaf forest spends the least C on N acquisition per unit area.
Results

How does the C cost of acquisition vary spatially and temporally?

\[C_{\text{use ratio}} = \frac{C_{\text{use, acquisition}}}{C_{\text{available}}} \]

where \(C_{\text{use, acquisition}} \) is the total C used by the four N uptake pathways, and \(C_{\text{available}} \) is the difference between GPP and maintenance respiration.

- Tropical forests have the lowest C use ratio.
- High-latitude shrubland and arid and semi-arid regions have the highest C use ratio.
How sensitive is the land C sink to a dynamic prediction of the C cost of N acquisition?

- Global total NPP is down-regulated by 30%.
- The reduced NPP amount peaks at 2°S, and decreases towards the Poles.
- CLM4.5-FUN2.0 results in NPP decrease in all biomes.
Discussion

CLM4.5-FUN2.0 simulated symbiotic BNF

- CLM4.5-FUN2.0 predicted symbiotic BNF is 83.9 Tg N yr\(^{-1}\) and 0.62 g N m\(^{-2}\) yr\(^{-1}\).

- Symbiotic BNF is 105.1 Tg N yr\(^{-1}\) (Cleveland et al., 2013) and 0.85 g N m\(^{-2}\) yr\(^{-1}\) on an per unit area basis (Sullivan et al., 2014).

Symbiotic N fixation, Cleveland et al. (2013)
We used a new global nutrient limitation product developed from remote sensing (Fisher et al., 2012).

The nutrient limitation and NPP variation patterns at the global scale.
Conclusion

- Total N uptake does not meet the total N demand, though this varies by biome and season, which reduces NPP globally by 30%.
- Global total N uptake amount is 1.2 Pg N yr\(^{-1}\).
- N acquisition uses 5.1 Pg C yr\(^{-1}\) globally.
- Mycorrhizal N uptake is the dominant N uptake pathway and BNF is the most expensive N uptake pathway.
- The global mean retranslocation ratio is 44%.
Acknowledgments

- The US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program

- The US National Science Foundation Ecosystem Science Program
Thank you for your attention!

Ectomycorrhizal Trees
I’m an “E” for ECM!

Ectomycorrhizal and Arbuscular Mycorrhizal Trees
I’m a “M” for Mixed!

Arbuscular Mycorrhizal Trees
I’m an “A” for AM!

Dr. Eddie Brzostek
Dr. Josh Fisher
Dr. Mingjie Shi

Morgan Monroe State Forest Ameriflux Site
<table>
<thead>
<tr>
<th>Name of the PFTs</th>
<th>AM (%)</th>
<th>ECM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare soil (not vegetated)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Needleleaf evergreen temperate tree</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Needleleaf evergreen boreal tree</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Needleleaf deciduous boreal tree</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Broadleaf evergreen tropical tree</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Broadleaf evergreen temperate tree</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Broadleaf deciduous tropical tree</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Broadleaf deciduous temperate tree</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Broadleaf deciduous boreal tree</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Broadleaf evergreen shrub</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Broadleaf deciduous temperate shrub</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Broadleaf deciduous boreal shrub</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>C3 arctic grass</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>C3 non-arctic grass</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>C4 grass</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 9. The global annual total (1980–2004) heterotrophic respiration (Pg C yr\(^{-1}\)) simulated by CLM4.0 and CLM4.0-FUN2.0.