Production-tagged aerosols in NorESM

Alf Grini, Alf Kirkevåg, Øyvind Seland, Dirk Olivie, Trond Iversen, Michael Schultz

February 18th 2015
Table of contents

1. Introduction
2. Methodology
3. Some early results
4. Conclusion
5. Questions
Norwegian Earth System Model (NorESM)
What is this "Norwegian Earth System Model"?

- It is heavily based on CESM.
- Using Production tagged aerosol scheme for aerosol dynamics developed since 1995 at University of Oslo.
- Using a modified version of the MICOM ocean model co-developed in Bergen.
- NorESM permits efficient cooperation on climate research in Norway (and Nordic countries).
- Used in CMIP5 and several AEROCOM intercomparisons.
Some history of the "production tagged" scheme

- First versions were implemented by Ø. Seland, A. Kirkevåg and T. Iversen in the late 1990s
- Improved and refined several times during last 15 years
- Used in CCM3, CAM3 and CAM4 (NorESM1) and predicted climate effect of man-made pollutants mixing with "background aerosol"
- The concept is still:
 - How do different physical/chemical processes change properties of the aerosol size distribution
 - What is optical and cloud microphysical properties
 - What is impact on climate?
What is the concept of "Production tagged aerosol dynamics"?

- It is a "poor man’s bin scheme”
- A sectional model calculates properties off-line and stores results in look up tables
- The atmospheric model can request properties of aerosol mixtures at run time based on the tables.
- For example: What is Single Scattering Albedo (SSA) based on X amount of condensate and Y amount of coagulate?
- ”Production tagged” means tracers are added based on their ”production mechanism”, e.g. ”sulfate produced in gas phase chemistry” is a tracer.
- The different tracers change the size distribution differently (in the off-line sectional model).
- 21 tracers in 13 separate mixtures
Look-up tables??

- TRANSPORT FEWER TRACERS
- LOOK UP SIZE DISTRIBUTION AFTER GROWTH

CONCEPT
Look-up tables??
Production-tagged algorithm

- **Off-line**: Pre-calculate change in initial size-distribution due to addition of ”production tagged” tracers
- **Off-line**: Store the result of several physical properties in look up tables
- **In climate model**: Transport original aerosol distribution separately from the ”pollutants” (production tagged tracers)
- **In Climate model**: Based on tables: Look up mixture properties during model run
CAM4 did not have on-line size resolved aerosols, but CAM5 has MAM!

Why do we need the Production tagged aerosols?
- PT-aerosols are programmed to be an alternative, not a replacement for MAM
- Using the off-line sectional model, we calculate other size-distribution features than MAM

The code is made so that changing from MAM to bulk aerosols is similar to changing from MAM to PT-aerosols
Aerosol optical depth, year 2000

NorESM1 (CAM4-Oslo) left, early NorESM2 (CAM5-Oslo) right

AOD avg = 0.1353 AOD avg = 0.0913
SW Cloud Effective radiative forcing 1850-2000

NorESM1 (CAM4-Oslo) left, early NorESM2 (CAM5-Oslo) right

SW cloud radiative forcing at TOA

NorESM1: avg = -0.908 W m\(^{-2}\)

NorESM2: avg = -1.303 W m\(^{-2}\)
New features in NorESM2

- Nucleation as function of low volatile organic vapours (in cooperation with University of Helsinki, Finland)
- Investigate semi-volatile aerosol (nitrate and SOA)
- Hopefully based on CAM5.5
We have a "production tagged" aerosol dynamics scheme
We have ported our scheme from CAM4 to CAM5
The production-tagged aerosols interact with surface / radiation / clouds in the same way (but differently 😊) as MAM3/MAM7
We are very grateful to all support from NCAR and CESM!!
Questions?